Home
Class 12
MATHS
If the line x = alpha divides the area o...

If the line `x = alpha` divides the area of region `R = {(x,y) in R^(2) : x^(3) le y le x, 0 le x le 1}` into two equal parts, then

A

`2alpha^(4)-4alpha^(2)+1=0`

B

`alpha^(4)+4alpha^(2)-1=0`

C

`1/2 lt alpha lt 1`

D

`0 lt alpha le 1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) such that the line \( x = \alpha \) divides the area of the region \( R = \{(x,y) \in \mathbb{R}^2 : x^3 \leq y \leq x, 0 \leq x \leq 1\} \) into two equal parts. ### Step-by-Step Solution: 1. **Identify the Functions and Region**: The region \( R \) is bounded by the curves \( y = x^3 \) and \( y = x \) for \( 0 \leq x \leq 1 \). 2. **Calculate the Total Area of Region \( R \)**: The area \( A \) of region \( R \) can be calculated using the integral: \[ A = \int_0^1 (x - x^3) \, dx \] Here, \( x \) is the upper function and \( x^3 \) is the lower function. 3. **Evaluate the Integral**: \[ A = \int_0^1 (x - x^3) \, dx = \int_0^1 x \, dx - \int_0^1 x^3 \, dx \] Calculate each integral: - \( \int_0^1 x \, dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1}{2} \) - \( \int_0^1 x^3 \, dx = \left[ \frac{x^4}{4} \right]_0^1 = \frac{1}{4} \) Therefore, \[ A = \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \] 4. **Set Up the Equation for Area Divided by \( x = \alpha \)**: To find \( \alpha \) such that the area to the left of \( x = \alpha \) is half of the total area, we set up the equation: \[ \int_0^\alpha (x - x^3) \, dx = \frac{1}{2} A = \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8} \] 5. **Evaluate the Left Side Integral**: \[ \int_0^\alpha (x - x^3) \, dx = \int_0^\alpha x \, dx - \int_0^\alpha x^3 \, dx \] Calculate each integral: - \( \int_0^\alpha x \, dx = \left[ \frac{x^2}{2} \right]_0^\alpha = \frac{\alpha^2}{2} \) - \( \int_0^\alpha x^3 \, dx = \left[ \frac{x^4}{4} \right]_0^\alpha = \frac{\alpha^4}{4} \) Therefore, \[ \int_0^\alpha (x - x^3) \, dx = \frac{\alpha^2}{2} - \frac{\alpha^4}{4} \] 6. **Set the Equation**: Set the integral equal to \( \frac{1}{8} \): \[ \frac{\alpha^2}{2} - \frac{\alpha^4}{4} = \frac{1}{8} \] 7. **Multiply Through by 8 to Eliminate Fractions**: \[ 4\alpha^2 - 2\alpha^4 = 1 \] Rearranging gives: \[ 2\alpha^4 - 4\alpha^2 + 1 = 0 \] 8. **Solve the Quadratic in \( \alpha^2 \)**: Let \( u = \alpha^2 \), then: \[ 2u^2 - 4u + 1 = 0 \] Using the quadratic formula: \[ u = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{4 \pm \sqrt{16 - 8}}{4} = \frac{4 \pm \sqrt{8}}{4} = \frac{4 \pm 2\sqrt{2}}{4} = 1 \pm \frac{\sqrt{2}}{2} \] 9. **Find \( \alpha \)**: Since \( u = \alpha^2 \), we take the positive root: \[ \alpha^2 = 1 - \frac{\sqrt{2}}{2} \quad \text{(since } \alpha \text{ must be in } [0, 1]) \] Thus, \[ \alpha = \sqrt{1 - \frac{\sqrt{2}}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - II|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Find the area of region : {(x,y) : 0 le y le x^(2) + 1, 0 le y le x + 1,0 le x le 2} .

Find the area of the region {(x,y): x^(2)+y^(2) le 1 le x + y}

The area of the region R={(x,y)//x^(2)le y le x} is

The area of the region {(x,y): xy le 8,1 le y le x^(2)} is :

Find the area of the region {(x,y)//x^(2)-x-1 le y le -1}

The area of the region A={(x,y), 0 le y le x|x|+1 and -1 le x le 1} in sq. units, is

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area (in sq units) of the region A={(x,y): x^(2) le y le x +2} is

The area of the region R={(x,y):|x| le|y| and x^2+y^2le1} is

The area of the region {(x,y):x^(2)+y^(2)le5,||x|-|y||ge1 is

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 3 Part - I
  1. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  2. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  3. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  4. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  5. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  6. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  7. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  8. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  9. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  10. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  11. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  12. Area of the region {(x,y) in R^(2):ygesqrt(|x+3|),5ylex+9le15} is eq...

    Text Solution

    |

  13. Let f:Rto(0,1) be a continuous function. Then, which of the following ...

    Text Solution

    |

  14. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  15. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  16. If the line x = alpha divides the area of region R = {(x,y) in R^(2) :...

    Text Solution

    |

  17. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |

  18. For each positive integer n let y(n)=1/n((n+1)(n+2)…..(n+n)^(1//n))....

    Text Solution

    |

  19. A farmer F(1) has a land in the shape of a triangle with vertices at P...

    Text Solution

    |

  20. The value of the integral int(0)^(1//2)(1+sqrt(3))/(((x+1)^(2)(1-x)^(6...

    Text Solution

    |