Home
Class 12
MATHS
Let [] denote the greatest integet funct...

Let [] denote the greatest integet function then the value `int_0^1.5 x[x^2].dx`

A

0

B

`3/2`

C

`3/4`

D

`5/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^{1.5} x \lfloor x^2 \rfloor \, dx \), where \( \lfloor x \rfloor \) denotes the greatest integer function, we will break the integral into segments based on the behavior of the greatest integer function. ### Step-by-Step Solution: 1. **Identify the intervals**: The function \( \lfloor x^2 \rfloor \) changes its value at certain points. We need to determine where \( x^2 \) crosses integer values in the range \( [0, 1.5] \). - For \( x \in [0, 1) \), \( x^2 \) ranges from \( 0 \) to \( 1 \), so \( \lfloor x^2 \rfloor = 0 \). - For \( x \in [1, \sqrt{2}) \), \( x^2 \) ranges from \( 1 \) to \( 2 \), so \( \lfloor x^2 \rfloor = 1 \). - For \( x \in [\sqrt{2}, 1.5] \), \( x^2 \) ranges from \( 2 \) to \( 2.25 \), so \( \lfloor x^2 \rfloor = 2 \). 2. **Split the integral**: We can split the integral into three parts based on the intervals identified: \[ \int_0^{1.5} x \lfloor x^2 \rfloor \, dx = \int_0^1 x \lfloor x^2 \rfloor \, dx + \int_1^{\sqrt{2}} x \lfloor x^2 \rfloor \, dx + \int_{\sqrt{2}}^{1.5} x \lfloor x^2 \rfloor \, dx \] 3. **Evaluate each integral**: - **First integral**: \[ \int_0^1 x \lfloor x^2 \rfloor \, dx = \int_0^1 x \cdot 0 \, dx = 0 \] - **Second integral**: \[ \int_1^{\sqrt{2}} x \lfloor x^2 \rfloor \, dx = \int_1^{\sqrt{2}} x \cdot 1 \, dx = \int_1^{\sqrt{2}} x \, dx \] This integral evaluates to: \[ \left[ \frac{x^2}{2} \right]_1^{\sqrt{2}} = \frac{(\sqrt{2})^2}{2} - \frac{1^2}{2} = \frac{2}{2} - \frac{1}{2} = \frac{1}{2} \] - **Third integral**: \[ \int_{\sqrt{2}}^{1.5} x \lfloor x^2 \rfloor \, dx = \int_{\sqrt{2}}^{1.5} x \cdot 2 \, dx = 2 \int_{\sqrt{2}}^{1.5} x \, dx \] This integral evaluates to: \[ 2 \left[ \frac{x^2}{2} \right]_{\sqrt{2}}^{1.5} = \left[ x^2 \right]_{\sqrt{2}}^{1.5} = (1.5)^2 - (\sqrt{2})^2 = 2.25 - 2 = 0.25 \] 4. **Combine the results**: Now, we combine the results of the three integrals: \[ \int_0^{1.5} x \lfloor x^2 \rfloor \, dx = 0 + \frac{1}{2} + 0.25 = \frac{1}{2} + \frac{1}{4} = \frac{2}{4} + \frac{1}{4} = \frac{3}{4} \] ### Final Answer: The value of the integral \( \int_0^{1.5} x \lfloor x^2 \rfloor \, dx \) is \( \frac{3}{4} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - I|49 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If [dot] denotes the greatest integer function, then find the value of int_1^2[3x]dx

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

If [*] denots the greatest integer function then the value of the integeral underset(-pi//2)overset(pi//2)int([(x)/(pi)]+0.5) dx , is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

The value of l = int_0^3([x]+[x+1/3]+[x+2/3])dx where [.] denotes the greatest integer function is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

If int_(0)^(11) (11^(x))/(11^([x]))dx = k/(log11) , (where [] denotes greatest integer function) then value of k is

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 3 Part - II
  1. The area bounded by the curves y=cos x and y= sin x between the ordina...

    Text Solution

    |

  2. For x epsilon(0,(5pi)/2), definite f(x)=int(0)^(x)sqrt(t) sin t dt. T...

    Text Solution

    |

  3. Let [] denote the greatest integet function then the value int0^1.5 x[...

    Text Solution

    |

  4. The area of the region enclosed by the curve y=x, x=e,y=1/x and the po...

    Text Solution

    |

  5. Find the area of the region bounded by the curve y^(2)=4x" and " x^(2)...

    Text Solution

    |

  6. The area bounded between the parabolas x^(2)=(y)/(4) and x^(2)=9y and ...

    Text Solution

    |

  7. If g(x) = int(0)^(x) cost dt, then g(x+pi) equals

    Text Solution

    |

  8. Statement I The value of the integral int(pi//6)^(pi//3) (dx)/(1+sqrt...

    Text Solution

    |

  9. The area (in square units) bounded by the curves y=sqrt(x),2y-x+3=0, x...

    Text Solution

    |

  10. The integral int(0)^(pi)sqrt(1+4"sin"^(2)x/2-4"sin"x/2)dx is equals to...

    Text Solution

    |

  11. The area of the region described by A={(x,y):x^(2)+y^(2)le1 and y^(2)l...

    Text Solution

    |

  12. The integral int(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx is e...

    Text Solution

    |

  13. The area (in sq. units) of the region described by {x,y):y^(2)le2x and...

    Text Solution

    |

  14. The area (in sq. units) of the region {(x,y):y^(2) le 2x and x^(2)...

    Text Solution

    |

  15. lim(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n)is equal to

    Text Solution

    |

  16. The area (in sq. units) of the region {(x,y):xge0,x+yle3,x^(2) le4y} a...

    Text Solution

    |

  17. The Integral int(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to: ...

    Text Solution

    |

  18. The value of int(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

    Text Solution

    |

  19. "Let "f(x)=cos x^(2),f(x)-sqrt(x), and alpha, beta (alphaltbeta) be th...

    Text Solution

    |

  20. Let I=undersetaoversetbint(x^4-2x^2)dx. If is minimum, then the ordere...

    Text Solution

    |