Home
Class 12
MATHS
Evaluate: intsin^(4)xcos^(2)xdx...

Evaluate:
`intsin^(4)xcos^(2)xdx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \sin^4 x \cos^2 x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \sin^4 x \cos^2 x \, dx \] We can express \( \sin^4 x \) as \( (\sin^2 x)^2 \) and use the identity \( \sin^2 x = 1 - \cos^2 x \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise EXERCISE -1 SUBJECTIVE QUESTIONS|1 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SUBJECTIVE QUESTIONS|14 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsin^4xcos^3xdx

Evaluate: int1/(sin^4xcos^2x)dx

Evaluate: int sin^(4)2xdx

Evaluate: intsin^4x\ dx

Evaluate: intsin^4x\ dx

Evaluate: intsin^3xcos^6xdx

Evaluate intsin^2xdx

Evaluate: intsin^(-1)2xdx

Evaluate intsin^3xdx

Evaluate: intsin^5xcosxdx