Home
Class 12
MATHS
int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is e...

`int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx` is equal to (a) `(sqrt(2x^4-2x^2+1))/(x^3)+C` (b) `(sqrt(2x^4-2x^2+1))/x+C` (c) `(sqrt(2x^4-2x^2+1))/(x^2)+C` (d) `(sqrt(2x^4-2x^2+1))/(2x^2)+C`

A

`sqrt(2x^(4)-2x^(2)+1)/(x^(2))+C`

B

`sqrt(2x^(4)-2x^(2)+1)/(x^(3))+C`

C

`sqrt(2x^(2)-2x^(2)+1)/(x)+C`

D

`sqrt(2x^(4)-2x^(2)+1)/(2x^(2))+C`

Text Solution

Verified by Experts

6
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART-II JEE MAIN|9 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise COMPREHENSION|5 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=

int (x^2+2x+4)/((x+1)sqrt(x^2+1)) dx

int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) + c (B) sqrt(x^4 + 2 - 1/x^2) + c (C) sqrt(x^2 + 1/x^2 + 1) + c (D) sqrt((x^4-x^2+1)/x) + c

int(x^4-1)/(x^2sqrt(x^4+x^2+1))dx= (a) sqrt(x^2+1/(x^2)+1)+C (b) (sqrt(x^4+x^2+1))/(x^2)+C (c) (sqrt(x^4+x^2+1))/x+C (d) none of these

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

int(x^3dx)/(sqrt(1+x^2)) is equal to (A) 1/3sqrt(1+x^2)(2+x^2)+C (B) 1/3sqrt(1+x^2)(x^2-1)+C (C) 1/3(1+x^2)^(3/2)+C (D) 1/3sqrt(1+x^2)(x^2-2)+C

int(dx)/((1+sqrt(x))sqrt((x-x^2))) is equal to (a) (1+sqrt(x))/((1-x)^2)+c (b) (1+sqrt(x))/((1+x)^2)+c (c) (1-sqrt(x))/((1-x)^2)+c (d) (2(sqrt(x)-1))/(sqrt((1-x)))+c

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s a. 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C b. 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C c. 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C d. 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these