Home
Class 12
MATHS
The integral int (sin^2xcos^2x)/(sin^5x+...

The integral `int (sin^2xcos^2x)/(sin^5x+cos^3xsin^2x+sin^3xcos^2x+cos^5x)^2 dx` is equal to (1) `1/(3(1+tan^3x))+C` (2) `(-1)/(3(1+tan^3x))+C` (3) `1/(1+cot^3x)+C` (4) `(-1)/(1+cot^3x)+C`

A

`1/(1+cot^(3)x)`+C

B

`-1/(1+cot^(3)x)+C`

C

`1/(3(1+tan^(3)x))+C`

D

`-1/(3(1+tan^(3)x))+C`

Text Solution

Verified by Experts

4
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-3 Part I- JEE ADVANCED/ IIT-JEE PROBLEMS|8 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int \ (sin^2x cos^2x)/(sin^5x+cos^3x sin^2x + sin^3x cos^2x + cos^5x)^2 \ dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

Integrate the functions (sin^3x+cos^3x)/(sin^2xcos^2x)

The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

Evaluate: int1/(sin^4x+sin^2xcos^2x+cos^4x)\ dx

intcosx/sin^2x(1-3cos^3x)dx

Evaluate the following integrals: int_0^(pi//4)(sin^2xcos^2x)/((sin^3x+cos^3x)^2)dx

("lim")_(xvecoo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2