Home
Class 12
MATHS
Let nge2 be a natural number and 0ltthet...

Let `nge2` be a natural number and `0ltthetaltpi//2`. Then `int((sin^ntheta-sintheta)^(1//n)costheta)/(sin^(n+1)theta)d theta` is equal to (where C is a constant of integration)

A

`n/(n^(2)-1)(1-1/(sin^(n+1)theta))^((n+1)/(n))+C`

B

`n/(n^(2)-1)(1-1/(sin^(n-1))theta)^((n+1)/n)+C`

C

`n/(n^(2)+1)(1-1/(sin^(n-1)theta)^((n+1)/(n)))+C`

D

`n/(n^(2)-1)(1+1/(sin^(n-1)theta))^((n+1)/(n))+C`

Text Solution

Verified by Experts

2
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise Exercise-3 Part I- JEE ADVANCED/ IIT-JEE PROBLEMS|8 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Let n ge 2 be a natural number and 0 lt theta lt (pi)/(2) , Then, int ((sin^(n)theta - sin theta)^(1/n) cos theta)/(sin^(n+1) theta)d theta is equal to (where C is a constant of integration)

The integral I=int(sin^(3)thetacos theta)/((1+sin^(2)theta)^(2))d theta simplifies to (where, c is the constant of integration)

The value of int((1-cos theta)^((3)/(10)))/((1+cos theta)^((13)/(10))) d theta is equal to (where, c is the constant of integration)

The integral I=intsin (2theta)[(1+cos^(2)theta)/(2sin^(2)theta)]d theta simplifies to (where, c is the integration constant)

int(cos2theta)/((sintheta+costheta)^(2))d""theta is equal to

Evaluate: intcos2thetaln((costheta+sintheta)/(costheta-sin theta))d theta

Evaluate: int(1+costheta)/(theta+sintheta)d theta

The value of int(1+sin2theta)/(sintheta-costheta)d""theta is equal to

If sintheta +costheta =1 , then the value of sin2theta is equal to

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :