Home
Class 12
MATHS
Evaluate: intcos2x" ln "(1+tanx)dx...

Evaluate: `intcos2x" ln "(1+tanx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \cos(2x) \ln(1 + \tan x) \, dx \), we can use integration by parts. Let's denote: - \( u = \ln(1 + \tan x) \) - \( dv = \cos(2x) \, dx \) Now, we need to find \( du \) and \( v \). ### Step 1: Differentiate \( u \) and Integrate \( dv \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise PART-II JEE MAIN|9 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intcos^2x\ dx

Evaluate: intcos^4x\ dx

Evaluate: intcos^2x/2\ dx

Evaluate: intsec^2x/sqrt (1+tanx)dx

Evaluate: intcos^3 3x\ dx

Evaluate intcos2x+e^x\dx

Evaluate: int(sec^(2)x)/(1+tanx)dx

Evaluate: intcos e c^4x dx

Evaluate: intcos(logx)\ dx

Evaluate: intcos(x) +x^7\ dx