Home
Class 12
MATHS
Evaluate: int(sec^(2)x)/(1+tanx)dx...

Evaluate: `int(sec^(2)x)/(1+tanx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int \frac{\sec^2 x}{1 + \tan x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = 1 + \tan x \). Then, we differentiate both sides to find \( dt \): \[ dt = \sec^2 x \, dx \] This means that \( dx = \frac{dt}{\sec^2 x} \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sec^2x)/(1-tan^2x)dx

Evaluate : int(sec^2x)/(3+tanx)\ dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

Evaluate: int(sec^2x)/(3+tanx)\ dx

Evaluate: int(sec^2x)/(tanx+2)dx

Evaluate: int(sec^2x)/(3+tanx)dx

int(sec^(2)x)/(sqrt(tanx))dx

Evaluate: (i) int(sec^2x)/(tanx+2)\ dx (ii) int(2cos2x+sec^2x)/(sin2x+tanx-5)\ dx

Evaluate: int(sec^4x)/(sqrt(tanx))\ dx

Evaluate: int(1-tanx)/(1+tanx)\ dx