Home
Class 12
MATHS
Evaluate: int(sin("ln"x))/(x)dx...

Evaluate: `int(sin("ln"x))/(x)`dx

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int \frac{\sin(\ln x)}{x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \ln x \). Then, differentiating both sides gives us: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt \] Since \( x = e^t \), we can substitute \( dx \) in terms of \( t \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(ln(lnx))/(xlnx)dx ,(x >0)

Evaluate int (sin(log x))/(x)dx

Evaluate: int(sin(x-a))/(sin(x-b))dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate : int(sin(x-a))/(sin(x+a))dx

Evaluate : int(sin(x-a))/(sin(x+a))dx

Evaluate: int(log(1-x))/(1-x)\ dx

Evaluate: int(sin(x+a))/("sin"(x+b))dx

Evaluate : int ("cos (log x)")/(x) " dx "

Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=