Home
Class 12
MATHS
Deduce the reduction formula for I(n)=in...

Deduce the reduction formula for `I_(n)=int(dx)/(1+x^(4))^(n)` and Hence evaluate `I_(2)=int(x)/(1+x^(4))^(2)`.

Text Solution

AI Generated Solution

To solve the problem, we need to derive the reduction formula for \[ I_n = \int \frac{dx}{(1+x^4)^n} \] and then use it to evaluate ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise HIGH LEVEL PROBLEMS (HLP)|29 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos

Similar Questions

Explore conceptually related problems

evaluate: int1/((x^2+1)(x^2+4))dx

Evaluate : int(x(1+x^(2)))/(1+x^(4))dx .

Evaluate: int(x^4\ dx)/((x-1)(x^2+1))

Evaluate: int(x^4\ dx)/((x-1)(x^2+1))

Evaluate: int(x^4\ dx)/((x-1)(x^2+1))

Evaluate: int1/((x^2+1)(x^2+4))\ dx

Evaluate: int1/((x^2+1)(x^2+4))\ dx

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Evaluate: (i) int1/(4x^2+4x+5)\ dx

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then