Home
Class 12
MATHS
Check whether following pairs of functio...

Check whether following pairs of function are identical or not?
`f(x)=tanx` and `g(x)=1/(cotx)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the functions \( f(x) = \tan x \) and \( g(x) = \frac{1}{\cot x} \) are identical, we need to check their domains and ranges. ### Step 1: Find the Domain of \( f(x) \) The function \( f(x) = \tan x \) is defined as: \[ f(x) = \frac{\sin x}{\cos x} \] The tangent function is undefined when \( \cos x = 0 \). This occurs at: \[ x = \frac{\pi}{2} + n\pi \quad \text{where } n \in \mathbb{Z} \] Thus, the domain of \( f(x) \) is: \[ \text{Domain of } f(x) = \mathbb{R} - \left\{ \frac{\pi}{2} + n\pi \mid n \in \mathbb{Z} \right\} \] ### Step 2: Find the Domain of \( g(x) \) The function \( g(x) = \frac{1}{\cot x} \) can be rewritten as: \[ g(x) = \frac{1}{\frac{\cos x}{\sin x}} = \frac{\sin x}{\cos x} = \tan x \] The cotangent function \( \cot x \) is undefined when \( \sin x = 0 \). This occurs at: \[ x = n\pi \quad \text{where } n \in \mathbb{Z} \] Thus, the domain of \( g(x) \) is: \[ \text{Domain of } g(x) = \mathbb{R} - \{ n\pi \mid n \in \mathbb{Z} \} \] ### Step 3: Compare the Domains The domains of \( f(x) \) and \( g(x) \) are: - Domain of \( f(x) \): \( \mathbb{R} - \left\{ \frac{\pi}{2} + n\pi \mid n \in \mathbb{Z} \right\} \) - Domain of \( g(x) \): \( \mathbb{R} - \{ n\pi \mid n \in \mathbb{Z} \} \) Since the points where \( f(x) \) and \( g(x) \) are undefined are different, their domains are not the same. ### Step 4: Find the Range of \( f(x) \) The range of \( f(x) = \tan x \) is: \[ \text{Range of } f(x) = (-\infty, \infty) \] ### Step 5: Find the Range of \( g(x) \) Since \( g(x) = \tan x \), its range is also: \[ \text{Range of } g(x) = (-\infty, \infty) \] ### Step 6: Compare the Ranges Both functions have the same range: - Range of \( f(x) \): \( (-\infty, \infty) \) - Range of \( g(x) \): \( (-\infty, \infty) \) ### Conclusion Since the domains of \( f(x) \) and \( g(x) \) are not the same, we conclude that the functions \( f(x) \) and \( g(x) \) are **not identical**.

To determine whether the functions \( f(x) = \tan x \) and \( g(x) = \frac{1}{\cot x} \) are identical, we need to check their domains and ranges. ### Step 1: Find the Domain of \( f(x) \) The function \( f(x) = \tan x \) is defined as: \[ f(x) = \frac{\sin x}{\cos x} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Check whether following pairs of function are identical or not? f(x)=x and g(x)=e^(lnx)

Check whether following pairs of function are identical or not? f(x)=sqrt(x^(2)) and g(x)=(sqrt(x))^(2)

Check whether following pairs of function are identical or not? f(x)=sqrt((1+cos2x)/2) and g(x)=cosx

Examine whether the folloiwng pair of function are identical or not: f(x)=sgn(x) and g(x)={(x/(|x|),x!=0),(0,x=0):}

Examine whether following pair of functions are identical or not? (i) f(x)=(x^(2)-1)/(x-1) and g(x)=x+1 (ii) f(x)=sin^(2)x+cos^(2)x and g(x)=sec^(2)x-tan^(2)x

Examine whether the folloiwng pair of function are identical or not: f(x)=cosec^(2)(x)-cot^(2)x and g(x)=1

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

Find the value of x for which function are identical. f(x)=x and g(x)=1/(1//x)

Find the values of x for which the following functions are identical. (i) f(x)=x " and " g(x)=(1)/(1//x) (ii) f(x)=(sqrt(9-x^(2)))/(sqrt(x-2)) " and " g(x)=sqrt((9-x^(2))/(x-2))

Which of the following pairs of functions is NOT identical? (a) e^((lnx)/2) and sqrt(x) (b) tan(tanx) and cot(cotx) (c) cos^(2)x+sin^(4)x and sin^(2)x+cos^(4)x (d) (|x|)/x and sgn(x) where sgn(x) stands for signum function.

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Let A be a set of n distinct elements. Then the total number of distin...

    Text Solution

    |

  2. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  3. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  4. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  5. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  6. Find for what values of x the following functions would be identical. ...

    Text Solution

    |

  7. Let f(x)=x^2+x+1 and g(x)=sinx . Show that fog!=gof .

    Text Solution

    |

  8. Let f(x) = x^2, g(x) = sin x, h(x) =sqrtx, then verify that [fo(goh)] ...

    Text Solution

    |

  9. Find fog and gof if: f(x)=e^(x),g(x)=lnx

    Text Solution

    |

  10. Find fog and gof , if f(x)=|x| , g(x)=sinx

    Text Solution

    |

  11. Find fog and gof if: f(x)=sinx,g(x)=x^(2)

    Text Solution

    |

  12. Find fog and gof , if f(x)=x^2+2 , g(x)=1-1/(1-x)

    Text Solution

    |

  13. If f(x) = ln(x^2 - x + 2) ; RR^+ rarr RR and g(x) = {x} + 1; [1, 2] ra...

    Text Solution

    |

  14. If f(x)={ 1+x^2 ; x<=1 ,x+1; 1< x<=2 and g(x)=1-x ; -2<=x<=1 then d...

    Text Solution

    |

  15. If f(x)=(x+2)/(x+1)and g(x) =(x-2)/x, then find the domain of fog(x)

    Text Solution

    |

  16. If f(x)={(sqrt(2)x,xepsilonQ-{0}),(3x,xepsilonQ^(c)):} then define fof...

    Text Solution

    |

  17. Let f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+7,xgt9):} and g(x)={(x^(2),-1...

    Text Solution

    |

  18. If f(x)=(4^(x))/(4^(x)+2), then show that f(x)+f(1-x)=1

    Text Solution

    |

  19. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  20. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |