Home
Class 12
MATHS
If f(x)={(sqrt(2)x,xepsilonQ-{0}),(3x,xe...

If `f(x)={(sqrt(2)x,xepsilonQ-{0}),(3x,xepsilonQ^(c)):}` then define `foff(x)` and hence define fofof………….`f(x)` where `f` is `n` times.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to define the function \( f(x) \) and then find \( f \circ f(x) \) and continue this process for \( n \) times. ### Step 1: Define the function \( f(x) \) The function is defined as follows: \[ f(x) = \begin{cases} \sqrt{2} x & \text{if } x \in \mathbb{Q} \setminus \{0\} \\ 3x & \text{if } x \in \mathbb{Q}^c \end{cases} \] ### Step 2: Find \( f(f(x)) \) We need to evaluate \( f(f(x)) \) based on the input \( x \). 1. **Case 1**: If \( x \in \mathbb{Q} \setminus \{0\} \): \[ f(x) = \sqrt{2} x \] Now, we need to determine whether \( \sqrt{2} x \) is rational or irrational. - Since \( \sqrt{2} \) is irrational, \( \sqrt{2} x \) will be irrational for any rational \( x \neq 0 \). - Therefore, \( \sqrt{2} x \in \mathbb{Q}^c \). \[ f(f(x)) = f(\sqrt{2} x) = 3(\sqrt{2} x) = 3\sqrt{2} x \] 2. **Case 2**: If \( x \in \mathbb{Q}^c \): \[ f(x) = 3x \] Here, \( 3x \) is also irrational (since multiplying an irrational number by a rational number results in an irrational number). - Thus, \( 3x \in \mathbb{Q}^c \). \[ f(f(x)) = f(3x) = 3(3x) = 9x \] ### Step 3: Generalize to \( f^n(x) \) Now, we can generalize this process: - If \( x \in \mathbb{Q} \setminus \{0\} \): - \( f(x) = \sqrt{2} x \) - \( f(f(x)) = 3\sqrt{2} x \) - \( f(f(f(x))) = f(3\sqrt{2} x) = 9\sqrt{2} x \) - Continuing this pattern, we see that: \[ f^n(x) = 3^{n-1} \cdot \sqrt{2} x \quad \text{for } n \geq 1 \] - If \( x \in \mathbb{Q}^c \): - \( f(x) = 3x \) - \( f(f(x)) = 9x \) - \( f(f(f(x))) = 27x \) - Continuing this pattern, we see that: \[ f^n(x) = 3^n x \quad \text{for } n \geq 1 \] ### Final Result Thus, we can summarize the results as follows: \[ f^n(x) = \begin{cases} 3^{n-1} \cdot \sqrt{2} x & \text{if } x \in \mathbb{Q} \setminus \{0\} \\ 3^n x & \text{if } x \in \mathbb{Q}^c \end{cases} \]

To solve the problem, we need to define the function \( f(x) \) and then find \( f \circ f(x) \) and continue this process for \( n \) times. ### Step 1: Define the function \( f(x) \) The function is defined as follows: \[ f(x) = \begin{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x) = x/(sqrt(1+x^2) then fofof(x)

If f(x) = x/(sqrt(1+x^2) then fofof(x)

Find fofof If the funtion f(x)=x+3

Find the anti derivative F of f defined by f(x)=4x^3-6 , where F (0) = 3

If f(x)=(sqrt(x^(2)-4))/(x-4) , what are all the values of x for which f(x) is defined ?

If f(x)={((alpha-1)x,xepsilonQ^(c)),(-alpha^(2)x+alpha+3x-1,xepsilonQ):} and g(x)={(x,xepsilonQ^(c)),(1-x,xepsilonQ):} are inverse to each other then find all possible values of alpha .

If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

Show that the function f: N rarr N defined by f(x)= 2x + 3 , where x in N , is not bijective.

If f: R rarr R is defined by f(x)=3x+2,\ define f\ [f(x)]\

If a funciton f(x) is defined for x in [0,1] , then the function f(2x+3) is defined for

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. If f(x)={ 1+x^2 ; x<=1 ,x+1; 1< x<=2 and g(x)=1-x ; -2<=x<=1 then d...

    Text Solution

    |

  2. If f(x)=(x+2)/(x+1)and g(x) =(x-2)/x, then find the domain of fog(x)

    Text Solution

    |

  3. If f(x)={(sqrt(2)x,xepsilonQ-{0}),(3x,xepsilonQ^(c)):} then define fof...

    Text Solution

    |

  4. Let f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+7,xgt9):} and g(x)={(x^(2),-1...

    Text Solution

    |

  5. If f(x)=(4^(x))/(4^(x)+2), then show that f(x)+f(1-x)=1

    Text Solution

    |

  6. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  7. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  8. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  9. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  10. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  11. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  12. Examine whether the following function are even or odd or neither even...

    Text Solution

    |

  13. Examine whether the following function are even or odd or neither even...

    Text Solution

    |

  14. Examine whether the following function are even or odd or neither even...

    Text Solution

    |

  15. Identify the given functions whether odd or even or neither: f(x)={(x|...

    Text Solution

    |

  16. Which of the following function is not periodic, where [.] denotes gre...

    Text Solution

    |

  17. Which of the following function are not periodic (where [.] denotes gr...

    Text Solution

    |

  18. Which of the following function are not periodic (where [.] denotes gr...

    Text Solution

    |

  19. Find the fundamental period of the following function: f(x)=2+3cos(x...

    Text Solution

    |

  20. Find the fundamental period of the following function: f(x)=sin 3x+c...

    Text Solution

    |