Home
Class 12
MATHS
Let f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+...

Let `f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+7,xgt9):}` and `g(x)={(x^(2),-1lexlt3),(x+2,3lexle5):}` then, find ` f(g(x))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(g(x)) \), we will follow these steps: ### Step 1: Define the Functions We have two functions defined as follows: - \( f(x) = \begin{cases} x + 1 & \text{if } x \leq 4 \\ 2x + 1 & \text{if } 4 < x \leq 9 \\ -x + 7 & \text{if } x > 9 \end{cases} \) - \( g(x) = \begin{cases} x^2 & \text{if } -1 \leq x < 3 \\ x + 2 & \text{if } 3 \leq x \leq 5 \end{cases} \) ### Step 2: Determine the Range of \( g(x) \) We need to find the range of \( g(x) \) for the two cases: 1. For \( -1 \leq x < 3 \): - The maximum value occurs at \( x = 3 \) (not included), so \( g(x) \) approaches \( 9 \) but does not reach it. - Therefore, \( g(x) \) ranges from \( 0 \) to \( 9 \) (not including \( 9 \)). 2. For \( 3 \leq x \leq 5 \): - At \( x = 3 \), \( g(3) = 5 \). - At \( x = 5 \), \( g(5) = 7 \). - Therefore, \( g(x) \) ranges from \( 5 \) to \( 7 \). Combining these ranges, we find that \( g(x) \) takes values in the interval \( [0, 9) \). ### Step 3: Analyze \( f(g(x)) \) Now we will evaluate \( f(g(x)) \) based on the ranges of \( g(x) \): 1. **For \( 0 \leq g(x) \leq 4 \)**: - Here, \( f(g(x)) = g(x) + 1 \). - This corresponds to \( g(x) \) values from \( 0 \) to \( 4 \). Thus, for \( -1 \leq x < 2 \): - \( f(g(x)) = g(x) + 1 = x^2 + 1 \). 2. **For \( 4 < g(x) \leq 7 \)**: - Here, \( f(g(x)) = 2g(x) + 1 \). - This corresponds to \( g(x) \) values from \( 5 \) to \( 7 \) (which occurs when \( 3 \leq x \leq 5 \)): - \( f(g(x)) = 2(x + 2) + 1 = 2x + 4 + 1 = 2x + 5 \). 3. **For \( 7 < g(x) < 9 \)**: - Here, \( f(g(x)) = -g(x) + 7 \). - However, since \( g(x) \) does not actually reach \( 9 \) and values above \( 7 \) will not be considered as \( g(x) \) only goes up to \( 7 \). ### Step 4: Combine the Results Now we can combine the results from the different intervals: - For \( -1 \leq x \leq 2 \): \[ f(g(x)) = x^2 + 1 \] - For \( 3 \leq x \leq 5 \): \[ f(g(x)) = 2x + 5 \] ### Final Result Thus, we can summarize \( f(g(x)) \) as: \[ f(g(x)) = \begin{cases} x^2 + 1 & \text{if } -1 \leq x \leq 2 \\ 2x + 5 & \text{if } 3 \leq x \leq 5 \end{cases} \]

To find \( f(g(x)) \), we will follow these steps: ### Step 1: Define the Functions We have two functions defined as follows: - \( f(x) = \begin{cases} x + 1 & \text{if } x \leq 4 \\ 2x + 1 & \text{if } 4 < x \leq 9 \\ -x + 7 & \text{if } x > 9 ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(3^x","-1lexle1),(4-x","1ltxle4):} then

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

If f(x)={{:(x",",0lexle1),(2-e^(x-1)",",1ltxle2),(x-e",",2ltxle3):} and g'(x)=f(x), x in [1,3] , then

If g(x)=x^(2)+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

Let f(x)={{:(x+1", "xlgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):} Find the LHL and RHL of g(f(x)) at x=0 and, hence, find lim_(xto0) g(f(x)).

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog .

f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If f(x) is an even function in R then the definition of f(x) in (0,oo) is: (A) f(x)={(4x, 0ltxle1),(4, xgt1):} (B) f(x)={(4x, 0ltxle1),(-4, xgt1):} (C) f(x)={(4, 0ltxle1),(4x, xgt1):} (D) f(x)={(4, xlt-1),(-4x, -1lexle0):}

If f(x)={{:((x)/(sinx)",",x gt0),(2-x",",xle0):}andg(x)={{:(x+3",",xlt1),(x^(2)-2x-2",",1lexlt2),(x-5",",xge2):} Then the value of lim_(xrarr0) g(f(x))

If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(x+2) , then

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. If f(x)=(x+2)/(x+1)and g(x) =(x-2)/x, then find the domain of fog(x)

    Text Solution

    |

  2. If f(x)={(sqrt(2)x,xepsilonQ-{0}),(3x,xepsilonQ^(c)):} then define fof...

    Text Solution

    |

  3. Let f(x)={(x+1,xle4),(2x+1,4ltxle9),(-x+7,xgt9):} and g(x)={(x^(2),-1...

    Text Solution

    |

  4. If f(x)=(4^(x))/(4^(x)+2), then show that f(x)+f(1-x)=1

    Text Solution

    |

  5. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  6. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  7. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  8. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  9. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  10. Determine whether the following functions are even or odd or neither e...

    Text Solution

    |

  11. Examine whether the following function are even or odd or neither even...

    Text Solution

    |

  12. Examine whether the following function are even or odd or neither even...

    Text Solution

    |

  13. Examine whether the following function are even or odd or neither even...

    Text Solution

    |

  14. Identify the given functions whether odd or even or neither: f(x)={(x|...

    Text Solution

    |

  15. Which of the following function is not periodic, where [.] denotes gre...

    Text Solution

    |

  16. Which of the following function are not periodic (where [.] denotes gr...

    Text Solution

    |

  17. Which of the following function are not periodic (where [.] denotes gr...

    Text Solution

    |

  18. Find the fundamental period of the following function: f(x)=2+3cos(x...

    Text Solution

    |

  19. Find the fundamental period of the following function: f(x)=sin 3x+c...

    Text Solution

    |

  20. Find the fundamental period of the following function: f(x)="sin" (p...

    Text Solution

    |