Home
Class 12
MATHS
If f(x)={((alpha-1)x,xepsilonQ^(c)),(-al...

If `f(x)={((alpha-1)x,xepsilonQ^(c)),(-alpha^(2)x+alpha+3x-1,xepsilonQ):}` and `g(x)={(x,xepsilonQ^(c)),(1-x,xepsilonQ):}` are inverse to each other then find all possible values of `alpha`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \alpha \) such that the functions \( f(x) \) and \( g(x) \) are inverses of each other. Given: \[ f(x) = \begin{cases} (\alpha - 1)x & \text{if } x \in Q^c \\ -\alpha^2 x + \alpha + 3x - 1 & \text{if } x \in Q \end{cases} \] \[ g(x) = \begin{cases} x & \text{if } x \in Q^c \\ 1 - x & \text{if } x \in Q \end{cases} \] ### Step 1: Find the inverse of \( g(x) \) Since \( g(x) \) is defined piecewise, we will find its inverse piecewise as well. 1. For \( x \in Q^c \): \[ g(x) = x \implies g^{-1}(x) = x \] 2. For \( x \in Q \): \[ g(x) = 1 - x \implies y = 1 - x \implies x = 1 - y \implies g^{-1}(x) = 1 - x \] Thus, we have: \[ g^{-1}(x) = \begin{cases} x & \text{if } x \in Q^c \\ 1 - x & \text{if } x \in Q \end{cases} \] ### Step 2: Set \( f(x) \) equal to \( g^{-1}(x) \) Since \( f(x) \) and \( g(x) \) are inverses, we have: 1. For \( x \in Q^c \): \[ f(x) = g^{-1}(x) \implies (\alpha - 1)x = x \] Simplifying this gives: \[ \alpha - 1 = 1 \implies \alpha = 2 \] 2. For \( x \in Q \): \[ f(x) = g^{-1}(x) \implies -\alpha^2 x + \alpha + 3x - 1 = 1 - x \] Rearranging this gives: \[ -\alpha^2 x + \alpha + 3x - 1 = 1 - x \] \[ -\alpha^2 x + 3x + x = 1 - \alpha + 1 \] \[ (-\alpha^2 + 4)x = 2 - \alpha \] ### Step 3: Analyze the equation For the equation to hold for all \( x \in Q \), the coefficients must be equal: 1. Coefficient of \( x \): \[ -\alpha^2 + 4 = 0 \implies \alpha^2 = 4 \implies \alpha = 2 \text{ or } \alpha = -2 \] 2. Constant term: \[ 2 - \alpha = 0 \implies \alpha = 2 \] ### Conclusion The values of \( \alpha \) that satisfy both conditions are: - From the first part, we found \( \alpha = 2 \). - From the second part, we found \( \alpha = 2 \) or \( \alpha = -2 \). However, since \( \alpha = -2 \) does not satisfy the first part, the only valid solution is: \[ \alpha = 2 \] ### Final Answer The only possible value of \( \alpha \) is \( 2 \).

To solve the problem, we need to find the values of \( \alpha \) such that the functions \( f(x) \) and \( g(x) \) are inverses of each other. Given: \[ f(x) = \begin{cases} (\alpha - 1)x & \text{if } x \in Q^c \\ -\alpha^2 x + \alpha + 3x - 1 & \text{if } x \in Q ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(sqrt(2)x,xepsilonQ-{0}),(3x,xepsilonQ^(c)):} then define foff(x) and hence define fofof…………. f(x) where f is n times.

let |{:(1+x,x,x^(2)),(x,1+x,x^(2)),(x^(2),x,1+x):}|=(1)/(6)(x-alpha_(1))(x-alpha_(2))(x-alpha_(3))(x-alpha_(4)) be an identity in x, where alpha_(1),alpha_(2),alpha_(3),alpha_(4) are independent of x. Then find the value of alpha_(1)alpha_(2)alpha_(3)alpha_(4)

Let f(x) be defined as f(x)={tan^(-1)alpha-5x^2,0ltxlt1 and -6x ,xgeq1 if f(x) has a maximum at x=1, then find the values of alpha .

If alpha le sin^(-1)x+cos^(-1)x +tan^(-1)xlebeta then find the value of alpha and beta

If the quadratic equation , 4^(sec^(2)alpha) x^(2) + 2x + (beta^(2)- beta + 1/2) = 0 have real roots, then find all the possible value of cos alpha + cos^(-1) beta .

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

Evaluate: int1/((x-alpha)(beta-x))dx ,(beta>alpha)

If alpha,beta are zeroes of polynomial f(x) =x^(2)-p(x+1)-c , then find the value of (alpha+1)(beta+1) .

If 1,1,alpha are the roots of x^3 -6x^2 +9 x-4=0 then find ' alpha'

If alpha,beta are roots of x^2-3x+a=0 , a in R and alpha <1< beta then find the value of a.

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Solve: 2x^(2)-5x+2=(5-sqrt(9+8x))/4, where xlt5/4.

    Text Solution

    |

  2. If g is inverse of f(x) = x^3 + x + cosx, then find the value of g'(...

    Text Solution

    |

  3. If f(x)={((alpha-1)x,xepsilonQ^(c)),(-alpha^(2)x+alpha+3x-1,xepsilonQ)...

    Text Solution

    |

  4. Find the domain of each of the following function: f(x)=(sin^(-1)x)/x

    Text Solution

    |

  5. Find the domain of each of the following function: f(x)=sqrt(1-2x)+3si...

    Text Solution

    |

  6. Find the domain of each of the following function: f(x)=2^(sin^(-1)x)+...

    Text Solution

    |

  7. Find the range of each of the following f(x) = ln (sin^-1 x)

    Text Solution

    |

  8. Find the range of each of the following function: f(x)=sin^(-1)(sqrt...

    Text Solution

    |

  9. Find the range of each of the following function: f(x)=cos^(-1)(((x-...

    Text Solution

    |

  10. Write the value of sin{pi/3-sin^(-1)(-1/2)}

    Text Solution

    |

  11. Find the simplified value of the following expression: tan["cos"^(-1...

    Text Solution

    |

  12. Find the principal value of the following: """"" sin^(-1){cos(sin^(...

    Text Solution

    |

  13. If underset( i = 1) overset( 2n) Sigma sin^(-1) x(i) = n pi , then fi...

    Text Solution

    |

  14. Solve cos^(-1)x >cos^(-1)x^2

    Text Solution

    |

  15. Solve the following inequality: arc cot^(2)x-5 arc cotx+6gt0

    Text Solution

    |

  16. Solve the following inequality: sin^(-1)xgt-1

    Text Solution

    |

  17. Solve the following inequality: cos^(-1)xlt2

    Text Solution

    |

  18. Solve the following inequality: cot^(-1)xlt -sqrt(3)

    Text Solution

    |

  19. let f:[-pi/3,pi/6]rarr B defined by f(x)=2cos^2x+sqrt3sin2x+1. Find B ...

    Text Solution

    |

  20. Evaluate the following inverse trigonometric expression: sin^(-1)("s...

    Text Solution

    |