Home
Class 12
MATHS
Find the range of each of the following ...

Find the range of each of the following function:
` f(x)=sin^(-1)(sqrt(3x^(2)+1)/(5x^(2)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin^{-1}\left(\frac{\sqrt{3x^2 + 1}}{5x^2 + 1}\right) \), we will follow these steps: ### Step 1: Analyze the Function Inside the Inverse Sine The function inside the inverse sine is \( \frac{\sqrt{3x^2 + 1}}{5x^2 + 1} \). We need to determine the range of this expression for all real values of \( x \). ### Step 2: Determine the Limits of the Expression 1. **As \( x \to 0 \)**: \[ \frac{\sqrt{3(0)^2 + 1}}{5(0)^2 + 1} = \frac{\sqrt{1}}{1} = 1 \] 2. **As \( x \to \infty \)**: \[ \frac{\sqrt{3x^2 + 1}}{5x^2 + 1} \approx \frac{\sqrt{3x^2}}{5x^2} = \frac{\sqrt{3}}{5} \] 3. **As \( x \to -\infty \)**: The analysis is similar to \( x \to \infty \): \[ \frac{\sqrt{3x^2 + 1}}{5x^2 + 1} \approx \frac{\sqrt{3}}{5} \] ### Step 3: Find the Range of the Expression From the above limits, we see that: - The expression approaches \( 1 \) as \( x \) approaches \( 0 \). - The expression approaches \( \frac{\sqrt{3}}{5} \) as \( x \) approaches \( \infty \) or \( -\infty \). ### Step 4: Determine the Valid Range for the Inverse Sine Function Since the value of \( \frac{\sqrt{3x^2 + 1}}{5x^2 + 1} \) is always positive and lies between \( \frac{\sqrt{3}}{5} \) and \( 1 \), we can conclude that: \[ \frac{\sqrt{3}}{5} < \frac{\sqrt{3x^2 + 1}}{5x^2 + 1} \leq 1 \] ### Step 5: Apply the Inverse Sine Function The range of \( \sin^{-1}(y) \) where \( y \) is in the interval \( \left(\frac{\sqrt{3}}{5}, 1\right) \) corresponds to: - \( \sin^{-1}\left(\frac{\sqrt{3}}{5}\right) \) to \( \sin^{-1}(1) \). ### Step 6: Final Range Since \( \sin^{-1}(1) = \frac{\pi}{2} \) and \( \sin^{-1}\left(\frac{\sqrt{3}}{5}\right) \) is a calculable value, we can denote the range of \( f(x) \) as: \[ \left(\sin^{-1}\left(\frac{\sqrt{3}}{5}\right), \frac{\pi}{2}\right) \] ### Conclusion Thus, the range of the function \( f(x) = \sin^{-1}\left(\frac{\sqrt{3x^2 + 1}}{5x^2 + 1}\right) \) is: \[ \left(\sin^{-1}\left(\frac{\sqrt{3}}{5}\right), \frac{\pi}{2}\right) \]

To find the range of the function \( f(x) = \sin^{-1}\left(\frac{\sqrt{3x^2 + 1}}{5x^2 + 1}\right) \), we will follow these steps: ### Step 1: Analyze the Function Inside the Inverse Sine The function inside the inverse sine is \( \frac{\sqrt{3x^2 + 1}}{5x^2 + 1} \). We need to determine the range of this expression for all real values of \( x \). ### Step 2: Determine the Limits of the Expression 1. **As \( x \to 0 \)**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the range of each of the following function: f(x)=x/(1+x^(2))

Find the domain of each of the following function: f(x)=2^(sin^(-1)x)+1/(sqrt(x-2))

Find the range of each of the following function: f(x)=cos^(-1)(((x-1)(x+5))/(x(x-2)(x-3)))

Find the domain of each of the following functions: f(x)=sin^(-1)sqrt(x^2-1) (ii) f(x)=sin^(-1)x+sin^(-1)2x

Find the domain the range of each of the following function: f(x)=sin^(2)(x^(3))+cos^(2)(x^(3))

Find the domain of each of the following functions: f(x)=(x^(3)-5x+3)/(x^(2)-1)

Find the range of each of the following f(x) = ln (sin^-1 x)

Find the domain the range of each of the following function: f(x)=1/(sqrt(4+3sinx))

Find the domain of the following functions. f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2)))

Find the domain of each of the following function: f(x)=sqrt(1-2x)+3sin^(-1)((3x-1)/2)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the domain of each of the following function: f(x)=2^(sin^(-1)x)+...

    Text Solution

    |

  2. Find the range of each of the following f(x) = ln (sin^-1 x)

    Text Solution

    |

  3. Find the range of each of the following function: f(x)=sin^(-1)(sqrt...

    Text Solution

    |

  4. Find the range of each of the following function: f(x)=cos^(-1)(((x-...

    Text Solution

    |

  5. Write the value of sin{pi/3-sin^(-1)(-1/2)}

    Text Solution

    |

  6. Find the simplified value of the following expression: tan["cos"^(-1...

    Text Solution

    |

  7. Find the principal value of the following: """"" sin^(-1){cos(sin^(...

    Text Solution

    |

  8. If underset( i = 1) overset( 2n) Sigma sin^(-1) x(i) = n pi , then fi...

    Text Solution

    |

  9. Solve cos^(-1)x >cos^(-1)x^2

    Text Solution

    |

  10. Solve the following inequality: arc cot^(2)x-5 arc cotx+6gt0

    Text Solution

    |

  11. Solve the following inequality: sin^(-1)xgt-1

    Text Solution

    |

  12. Solve the following inequality: cos^(-1)xlt2

    Text Solution

    |

  13. Solve the following inequality: cot^(-1)xlt -sqrt(3)

    Text Solution

    |

  14. let f:[-pi/3,pi/6]rarr B defined by f(x)=2cos^2x+sqrt3sin2x+1. Find B ...

    Text Solution

    |

  15. Evaluate the following inverse trigonometric expression: sin^(-1)("s...

    Text Solution

    |

  16. Evaluate the following inverse trigonometric expression: tan^(-1)("t...

    Text Solution

    |

  17. Write the value of cos^(-1)(cos(5pi/4)) .

    Text Solution

    |

  18. Evaluate the following inverse trigonometric expression: sec^(-1)("s...

    Text Solution

    |

  19. Find the value of the following inverse trigonometric expression: si...

    Text Solution

    |

  20. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |