Home
Class 12
MATHS
Find the simplified value of the followi...

Find the simplified value of the following expression:
`tan["cos"^(-1)1/2+tan^(-1)(-1/(sqrt(3)))]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the simplified value of the expression \( \tan\left(\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right) \), we can follow these steps: ### Step 1: Evaluate \( \cos^{-1}\left(\frac{1}{2}\right) \) The value of \( \cos^{-1}\left(\frac{1}{2}\right) \) corresponds to the angle whose cosine is \( \frac{1}{2} \). This angle is \( \frac{\pi}{3} \) radians. ### Step 2: Evaluate \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) The value of \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) corresponds to the angle whose tangent is \( -\frac{1}{\sqrt{3}} \). This angle is \( -\frac{\pi}{6} \) radians. ### Step 3: Combine the angles Now, we can substitute the values we found into the expression: \[ \tan\left(\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right) = \tan\left(\frac{\pi}{3} - \frac{\pi}{6}\right) \] ### Step 4: Simplify the angle To simplify \( \frac{\pi}{3} - \frac{\pi}{6} \), we need a common denominator: \[ \frac{\pi}{3} = \frac{2\pi}{6} \] Thus, \[ \frac{\pi}{3} - \frac{\pi}{6} = \frac{2\pi}{6} - \frac{\pi}{6} = \frac{\pi}{6} \] ### Step 5: Evaluate \( \tan\left(\frac{\pi}{6}\right) \) The value of \( \tan\left(\frac{\pi}{6}\right) \) is \( \frac{1}{\sqrt{3}} \). ### Final Answer Thus, the simplified value of the expression is: \[ \frac{1}{\sqrt{3}} \] ---

To find the simplified value of the expression \( \tan\left(\cos^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right)\right) \), we can follow these steps: ### Step 1: Evaluate \( \cos^{-1}\left(\frac{1}{2}\right) \) The value of \( \cos^{-1}\left(\frac{1}{2}\right) \) corresponds to the angle whose cosine is \( \frac{1}{2} \). This angle is \( \frac{\pi}{3} \) radians. ### Step 2: Evaluate \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) The value of \( \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) \) corresponds to the angle whose tangent is \( -\frac{1}{\sqrt{3}} \). This angle is \( -\frac{\pi}{6} \) radians. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following expression: tan("cos"^(-1)1/3)

Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

Find the value of tan.[cos^(-1)(1/2)+tan^(-1)(-1/(sqrt(3)))]

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Find the value of the following inverse trigonometric expression: tan^(-1)(tan(-6))

Find the principal value of the following (i) sin^(-1).(1)/(2) (ii) tan ^(-1).(1)/sqrt(3) (iii) cot ^(-1)(-sqrt3)

Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

Find the principal value of the following cos e c^(-1)(2) (ii) tan^(-1)(-sqrt(3)) cos^(-1)(1/(sqrt(2)))

Find the principal value of the following: (i) cosec^(-1)(2) (ii) tan^(-1) (-sqrt3) (iii) cos^(-1) (-(1)/(sqrt2))

Find the principal value of each of the following: (i) tan^(-1)(1/(sqrt(3))) (ii) tan^(-1)(-1/(sqrt(3)))

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the range of each of the following function: f(x)=cos^(-1)(((x-...

    Text Solution

    |

  2. Write the value of sin{pi/3-sin^(-1)(-1/2)}

    Text Solution

    |

  3. Find the simplified value of the following expression: tan["cos"^(-1...

    Text Solution

    |

  4. Find the principal value of the following: """"" sin^(-1){cos(sin^(...

    Text Solution

    |

  5. If underset( i = 1) overset( 2n) Sigma sin^(-1) x(i) = n pi , then fi...

    Text Solution

    |

  6. Solve cos^(-1)x >cos^(-1)x^2

    Text Solution

    |

  7. Solve the following inequality: arc cot^(2)x-5 arc cotx+6gt0

    Text Solution

    |

  8. Solve the following inequality: sin^(-1)xgt-1

    Text Solution

    |

  9. Solve the following inequality: cos^(-1)xlt2

    Text Solution

    |

  10. Solve the following inequality: cot^(-1)xlt -sqrt(3)

    Text Solution

    |

  11. let f:[-pi/3,pi/6]rarr B defined by f(x)=2cos^2x+sqrt3sin2x+1. Find B ...

    Text Solution

    |

  12. Evaluate the following inverse trigonometric expression: sin^(-1)("s...

    Text Solution

    |

  13. Evaluate the following inverse trigonometric expression: tan^(-1)("t...

    Text Solution

    |

  14. Write the value of cos^(-1)(cos(5pi/4)) .

    Text Solution

    |

  15. Evaluate the following inverse trigonometric expression: sec^(-1)("s...

    Text Solution

    |

  16. Find the value of the following inverse trigonometric expression: si...

    Text Solution

    |

  17. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  18. Find the value of the following inverse trigonometric expression: ta...

    Text Solution

    |

  19. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  20. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |