Home
Class 12
MATHS
let f:[-pi/3,pi/6]rarr B defined by f(x)...

let `f:[-pi/3,pi/6]rarr B` defined by `f(x)=2cos^2x+sqrt3sin2x+1`. Find B such that `f^-1` exists. Also find `f^-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the set \( B \) such that the function \( f \) is invertible, and then we will find the inverse function \( f^{-1} \). ### Step 1: Define the function The function is given by: \[ f(x) = 2\cos^2 x + \sqrt{3}\sin 2x + 1 \] where \( x \) is in the interval \( \left[-\frac{\pi}{3}, \frac{\pi}{6}\right] \). ### Step 2: Simplify the function Using the double angle identity for sine, we can rewrite \( \sin 2x \) as \( 2\sin x \cos x \). Thus, we can express \( f(x) \) as: \[ f(x) = 2\cos^2 x + \sqrt{3}(2\sin x \cos x) + 1 \] This simplifies to: \[ f(x) = 2\cos^2 x + 2\sqrt{3}\sin x \cos x + 1 \] ### Step 3: Rewrite using trigonometric identities We can use the identity \( 2\cos^2 x = \cos 2x + 1 \) to rewrite the function: \[ f(x) = \cos 2x + 1 + 2\sqrt{3}\sin x \cos x + 1 \] This can be further simplified to: \[ f(x) = \cos 2x + 2 + 2\sqrt{3}\sin x \cos x \] Now, we can express \( 2\sqrt{3}\sin x \cos x \) as \( \sqrt{3}\sin 2x \): \[ f(x) = \cos 2x + \sqrt{3}\sin 2x + 2 \] ### Step 4: Find the range of \( f(x) \) To find the range of \( f(x) \), we need to analyze the expression: \[ f(x) = 2 + \sqrt{(1^2 + (\sqrt{3})^2)}\sin(2x + \phi) \] where \( \phi \) is the phase shift. The maximum value of \( \sin \) function is 1 and the minimum is -1. Thus: \[ f(x) = 2 + 2\sin(2x + \phi) \] This means the range of \( f(x) \) is: \[ [2 - 2, 2 + 2] = [0, 4] \] ### Step 5: Set \( B \) Since \( f \) is one-to-one and onto, the set \( B \) such that \( f^{-1} \) exists is: \[ B = [0, 4] \] ### Step 6: Find the inverse function \( f^{-1}(x) \) To find the inverse function, we set: \[ y = f(x) = 2 + \sqrt{3}\sin(2x + \phi) \] Rearranging gives: \[ \sqrt{3}\sin(2x + \phi) = y - 2 \] Thus: \[ \sin(2x + \phi) = \frac{y - 2}{\sqrt{3}} \] Taking the inverse sine: \[ 2x + \phi = \sin^{-1}\left(\frac{y - 2}{\sqrt{3}}\right) \] Now isolating \( x \): \[ 2x = \sin^{-1}\left(\frac{y - 2}{\sqrt{3}}\right) - \phi \] Finally: \[ x = \frac{1}{2}\left(\sin^{-1}\left(\frac{y - 2}{\sqrt{3}}\right) - \phi\right) \] Replacing \( y \) with \( x \) gives us the inverse function: \[ f^{-1}(x) = \frac{1}{2}\left(\sin^{-1}\left(\frac{x - 2}{\sqrt{3}}\right) - \phi\right) \] ### Summary Thus, the set \( B \) is \( [0, 4] \) and the inverse function \( f^{-1}(x) \) can be expressed as: \[ f^{-1}(x) = \frac{1}{2}\left(\sin^{-1}\left(\frac{x - 2}{\sqrt{3}}\right) - \phi\right) \]

To solve the problem, we need to find the set \( B \) such that the function \( f \) is invertible, and then we will find the inverse function \( f^{-1} \). ### Step 1: Define the function The function is given by: \[ f(x) = 2\cos^2 x + \sqrt{3}\sin 2x + 1 \] where \( x \) is in the interval \( \left[-\frac{\pi}{3}, \frac{\pi}{6}\right] \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Let f : [-(pi)/(2), (pi)/(2)] rarr [3, 11] defined as f(x) = sin^(2)x + 4 sin x + 6 . Show that f is bijective function.

Let A={x in R|-1lt=xlt=1} and let f: A->A ,\ g: A->A be two functions defined by f(x)=x^2 and g(x)=sin(pix)/2 . Show that g^(-1) exists but f^(-1) does not exist. Also, find g^(-1) .

Let f:[-pi/3,(2pi)/3] rarr [0,4] be a function defined as f(x)=sqrt(3)sinx-cosx+2. Then f^(-1)(x) is given by (a) sin^(-1)((x-2)/2)-pi/6 (b) sin^(-1)((x-2)/2)+pi/6 (c) (2pi)/3+cos^(-1)((x-2)/2) (d) none of these

Let f:[-pi//2,pi//2] rarr [-1,1] where f(x)=sinx. Find whether f(x) is one-one or not.

Let f:[-pi/3,(2pi)/3]vec[0,4] be a function defined as f(x)=sqrt(3)sinx-cosx+2. Then f^(-1)(x) is given by sin^(-1)((x-2)/2)-pi/6 sin^(-1)((x-2)/2)+pi/6 (2pi)/3+cos^(-1)((x-2)/2) (d) none of these

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

Let f be a real function defined by f(x)=sqrt(x-1) . Find (fofof)(x)dot Also, show that fof!=f^2 .

f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

Let f be a real function defined by f(x)=sqrt(x-1.) Find (fofof)(x)dot Also, show that fof!=f^2dot

Let f:A->B be a function defined by f(x) =sqrt3sin x +cos x+4. If f is invertible, then

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Solve the following inequality: cos^(-1)xlt2

    Text Solution

    |

  2. Solve the following inequality: cot^(-1)xlt -sqrt(3)

    Text Solution

    |

  3. let f:[-pi/3,pi/6]rarr B defined by f(x)=2cos^2x+sqrt3sin2x+1. Find B ...

    Text Solution

    |

  4. Evaluate the following inverse trigonometric expression: sin^(-1)("s...

    Text Solution

    |

  5. Evaluate the following inverse trigonometric expression: tan^(-1)("t...

    Text Solution

    |

  6. Write the value of cos^(-1)(cos(5pi/4)) .

    Text Solution

    |

  7. Evaluate the following inverse trigonometric expression: sec^(-1)("s...

    Text Solution

    |

  8. Find the value of the following inverse trigonometric expression: si...

    Text Solution

    |

  9. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  10. Find the value of the following inverse trigonometric expression: ta...

    Text Solution

    |

  11. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  12. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  13. Evaluate: (i) cot(tan^(-1)a+cot^(-1)a)

    Text Solution

    |

  14. Find the value of the following expression: sin(sin^(-1)x+cos^(-1)x)...

    Text Solution

    |

  15. Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x.

    Text Solution

    |

  16. Evaluate the following expression: sin("cos"^(-1)3/5)

    Text Solution

    |

  17. Evaluate the following expression: tan("cos"^(-1)1/3)

    Text Solution

    |

  18. Evaluate the following expression: cosec"(sec"^(-1)(sqrt(41))/4)

    Text Solution

    |

  19. Evaluate the following expression: tan("cosec"^(-1)65/63)

    Text Solution

    |

  20. Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

    Text Solution

    |