Home
Class 12
MATHS
Find the value of the following inverse ...

Find the value of the following inverse trigonometric expression:
`cos^(-1)(1/(sqrt(2))("cos"(9pi)/10-"sin"(9pi)/10))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}\left(\frac{1}{\sqrt{2}} \left(\cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right)\right)\right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos^{-1}\left(\frac{1}{\sqrt{2}} \left(\cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right)\right)\right) \] We can express \( \frac{1}{\sqrt{2}} \) as \( \cos\left(\frac{\pi}{4}\right) \) and \( \frac{1}{\sqrt{2}} \) as \( \sin\left(\frac{\pi}{4}\right) \). Thus, we rewrite the expression as: \[ \cos^{-1}\left(\cos\left(\frac{\pi}{4}\right) \left(\cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right)\right)\right) \] ### Step 2: Use the cosine subtraction formula Using the identity \( \cos A \cos B - \sin A \sin B = \cos(A + B) \), we can rewrite: \[ \cos\left(\frac{\pi}{4}\right) \cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{\pi}{4}\right) \sin\left(\frac{9\pi}{10}\right) = \cos\left(\frac{\pi}{4} + \frac{9\pi}{10}\right) \] ### Step 3: Calculate the angle Now, we calculate the angle: \[ \frac{\pi}{4} + \frac{9\pi}{10} = \frac{5\pi}{20} + \frac{18\pi}{20} = \frac{23\pi}{20} \] Thus, we have: \[ \cos^{-1}\left(\cos\left(\frac{23\pi}{20}\right)\right) \] ### Step 4: Find the value of the inverse cosine The value of \( \cos^{-1}(\cos x) \) is \( x \) if \( x \) is in the range \( [0, \pi] \). However, \( \frac{23\pi}{20} \) is greater than \( \pi \). To bring it within the range, we can use the property: \[ \cos(2\pi - x) = \cos x \] Thus, we can write: \[ \frac{23\pi}{20} = 2\pi - \frac{17\pi}{20} \] So, we have: \[ \cos^{-1}\left(\cos\left(\frac{23\pi}{20}\right)\right) = 2\pi - \frac{23\pi}{20} = \frac{17\pi}{20} \] ### Final Answer Therefore, the value of the given expression is: \[ \frac{17\pi}{20} \] ---

To solve the expression \( \cos^{-1}\left(\frac{1}{\sqrt{2}} \left(\cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right)\right)\right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos^{-1}\left(\frac{1}{\sqrt{2}} \left(\cos\left(\frac{9\pi}{10}\right) - \sin\left(\frac{9\pi}{10}\right)\right)\right) \] We can express \( \frac{1}{\sqrt{2}} \) as \( \cos\left(\frac{\pi}{4}\right) \) and \( \frac{1}{\sqrt{2}} \) as \( \sin\left(\frac{\pi}{4}\right) \). Thus, we rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of the following inverse trigonometric expression: cos^(-1)(cos 10)

Find the value of the following inverse trigonometric expression: sin^(-1)(sin 4)

Find the value of the following inverse trigonometric expression: cot^(-1)(cot(-10))

Evaluate the following inverse trigonometric expression: sin^(-1)("sin"(7pi)/6)

Evaluate the following inverse trigonometric expression: tan^(-1)("tan"(2pi)/3)

Evaluate the following inverse trigonometric expression: sec^(-1)("sec"(7pi)/4)

sin^(-1)(sin((9pi)/4))

Find the value of the expression sin[cot^(-1){cos (pi/2)}]

The value oif the expressin (1+cospi/10)(1+cos(3pi)/10)(1+cos(7pi)/10)(1+cos(9pi)/10) is

Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the value of the following inverse trigonometric expression: ta...

    Text Solution

    |

  2. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  3. Find the value of the following inverse trigonometric expression: co...

    Text Solution

    |

  4. Evaluate: (i) cot(tan^(-1)a+cot^(-1)a)

    Text Solution

    |

  5. Find the value of the following expression: sin(sin^(-1)x+cos^(-1)x)...

    Text Solution

    |

  6. Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x.

    Text Solution

    |

  7. Evaluate the following expression: sin("cos"^(-1)3/5)

    Text Solution

    |

  8. Evaluate the following expression: tan("cos"^(-1)1/3)

    Text Solution

    |

  9. Evaluate the following expression: cosec"(sec"^(-1)(sqrt(41))/4)

    Text Solution

    |

  10. Evaluate the following expression: tan("cosec"^(-1)65/63)

    Text Solution

    |

  11. Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

    Text Solution

    |

  12. Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

    Text Solution

    |

  13. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  14. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  15. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  16. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  17. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  18. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  19. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  20. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |