Home
Class 12
MATHS
Solve the inequality tan^(-1)xgtcot^(-1)...

Solve the inequality `tan^(-1)xgtcot^(-1)cot^(-1)x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \tan^{-1} x > \cot^{-1} (\cot^{-1} x) \), we can follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ \tan^{-1} x > \cot^{-1} (\cot^{-1} x) \] ### Step 2: Use the identity for cotangent We know that: \[ \tan^{-1} x = \cot^{-1} \left( \frac{1}{x} \right) \] Thus, we can rewrite the inequality as: \[ \cot^{-1} \left( \frac{1}{x} \right) > \cot^{-1} (\cot^{-1} x) \] ### Step 3: Simplify the right side The term \( \cot^{-1} (\cot^{-1} x) \) simplifies to \( x \) because the cotangent and its inverse cancel each other out. Therefore, we have: \[ \cot^{-1} \left( \frac{1}{x} \right) > x \] ### Step 4: Analyze the cotangent function Since \( \cot^{-1} x \) is a decreasing function, we can reverse the inequality when we apply it. Thus, we can write: \[ \frac{1}{x} < \cot^{-1} x \] ### Step 5: Rearranging the inequality This gives us: \[ \cot^{-1} x > \frac{1}{x} \] ### Step 6: Graphical interpretation To understand the behavior of the functions \( \cot^{-1} x \) and \( \frac{1}{x} \), we can analyze their graphs. The graph of \( \cot^{-1} x \) approaches \( 0 \) as \( x \) approaches \( \infty \) and approaches \( \frac{\pi}{2} \) as \( x \) approaches \( 0 \). The graph of \( \frac{1}{x} \) is a hyperbola that approaches \( 0 \) as \( x \) approaches \( \infty \) and approaches \( \infty \) as \( x \) approaches \( 0 \). ### Step 7: Finding the solution From the graphical analysis, we can see that \( \cot^{-1} x \) will always be less than \( \frac{1}{x} \) for positive values of \( x \). Therefore, there are no values of \( x \) for which \( \cot^{-1} x > \frac{1}{x} \). ### Conclusion Thus, the inequality \( \tan^{-1} x > \cot^{-1} (\cot^{-1} x) \) has no solution. ---

To solve the inequality \( \tan^{-1} x > \cot^{-1} (\cot^{-1} x) \), we can follow these steps: ### Step 1: Rewrite the inequality We start with the given inequality: \[ \tan^{-1} x > \cot^{-1} (\cot^{-1} x) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Solve the inequation |3/(x-1)|gt1

The solution set of inequality (tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+(pi)/(2))-2cot^(-1)x+2(1+(pi)/(2))gtlim_(yrarr-oo)[sec^(-1)y-(pi)/(2)] is (where [ . ]denotes the G.I.F.)

Solve the following inequality: sin^(-1)xgt-1

Solve tan^(-1) x gt cot^(-1) x

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve the inequation: - 1/(x+2)gt0

Solve the inequation: (x-1)/(x-3)lt1

Solve the inequation (|x+1|-x)/xlt1

Solve the following inequality: sin^(-1) x > cos^(-1) x

Solve the equation cos(tan^(-1)x) = sin(cot^(-1)(3/4)) .

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Evaluate: (i) cot(tan^(-1)a+cot^(-1)a)

    Text Solution

    |

  2. Find the value of the following expression: sin(sin^(-1)x+cos^(-1)x)...

    Text Solution

    |

  3. Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x.

    Text Solution

    |

  4. Evaluate the following expression: sin("cos"^(-1)3/5)

    Text Solution

    |

  5. Evaluate the following expression: tan("cos"^(-1)1/3)

    Text Solution

    |

  6. Evaluate the following expression: cosec"(sec"^(-1)(sqrt(41))/4)

    Text Solution

    |

  7. Evaluate the following expression: tan("cosec"^(-1)65/63)

    Text Solution

    |

  8. Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

    Text Solution

    |

  9. Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

    Text Solution

    |

  10. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  11. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  12. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  13. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  14. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  15. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  16. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  17. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  18. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  19. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  20. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |