Home
Class 12
MATHS
Evaluate the following expression: sin...

Evaluate the following expression:
`sin((pi)/6+"cos"^(-1)1/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin\left(\frac{\pi}{6} + \cos^{-1}\left(\frac{1}{4}\right)\right) \), we can follow these steps: ### Step 1: Identify the components of the expression We have: - \( a = \frac{\pi}{6} \) - \( b = \cos^{-1}\left(\frac{1}{4}\right) \) ### Step 2: Use the sine addition formula The sine addition formula states: \[ \sin(a + b) = \sin(a)\cos(b) + \cos(a)\sin(b) \] Applying this to our expression: \[ \sin\left(\frac{\pi}{6} + \cos^{-1}\left(\frac{1}{4}\right)\right) = \sin\left(\frac{\pi}{6}\right)\cos\left(\cos^{-1}\left(\frac{1}{4}\right)\right) + \cos\left(\frac{\pi}{6}\right)\sin\left(\cos^{-1}\left(\frac{1}{4}\right)\right) \] ### Step 3: Calculate \( \sin\left(\frac{\pi}{6}\right) \) and \( \cos\left(\frac{\pi}{6}\right) \) We know: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] \[ \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] ### Step 4: Calculate \( \cos\left(\cos^{-1}\left(\frac{1}{4}\right)\right) \) and \( \sin\left(\cos^{-1}\left(\frac{1}{4}\right)\right) \) Using the property of inverse trigonometric functions: \[ \cos\left(\cos^{-1}\left(\frac{1}{4}\right)\right) = \frac{1}{4} \] To find \( \sin\left(\cos^{-1}\left(\frac{1}{4}\right)\right) \), we can use the Pythagorean identity: \[ \sin^2(b) + \cos^2(b) = 1 \] Let \( \sin(b) = y \). Then: \[ y^2 + \left(\frac{1}{4}\right)^2 = 1 \implies y^2 + \frac{1}{16} = 1 \implies y^2 = 1 - \frac{1}{16} = \frac{15}{16} \] Thus: \[ \sin(b) = \sqrt{\frac{15}{16}} = \frac{\sqrt{15}}{4} \] ### Step 5: Substitute back into the sine addition formula Now substituting back into the formula: \[ \sin\left(\frac{\pi}{6} + \cos^{-1}\left(\frac{1}{4}\right)\right) = \left(\frac{1}{2}\right)\left(\frac{1}{4}\right) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{15}}{4}\right) \] Calculating each term: \[ = \frac{1}{8} + \frac{\sqrt{3} \cdot \sqrt{15}}{8} = \frac{1}{8} + \frac{\sqrt{45}}{8} = \frac{1 + 3\sqrt{5}}{8} \] ### Final Answer Thus, the evaluated expression is: \[ \sin\left(\frac{\pi}{6} + \cos^{-1}\left(\frac{1}{4}\right)\right) = \frac{1 + 3\sqrt{5}}{8} \]

To evaluate the expression \( \sin\left(\frac{\pi}{6} + \cos^{-1}\left(\frac{1}{4}\right)\right) \), we can follow these steps: ### Step 1: Identify the components of the expression We have: - \( a = \frac{\pi}{6} \) - \( b = \cos^{-1}\left(\frac{1}{4}\right) \) ### Step 2: Use the sine addition formula ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following expression: sin("cos"^(-1)3/5)

Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Find the value of the following expression: sin(sin^(-1)x+cos^(-1)x),|x|,le1

Evaluate the following: sin^(-1)(sin\ pi/4)

Evaluate the following: cos^(-1)(cos((7pi)/6))

Evaluate the following: 1. sin^(-1)(s i n(2pi)/3) 2. cos^(-1)(c o s(7pi)/6) 3. tan^(-1)(t a n(2pi)/3)

Evaluate the following: sin^(-1)(sinpi/4) (ii) cos^(-1)(cos2pi/3) tan^(-1)(tanpi/3)

Evaluate the following inverse trigonometric expression: sin^(-1)("sin"(7pi)/6)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Evaluate the following expression: cosec"(sec"^(-1)(sqrt(41))/4)

    Text Solution

    |

  2. Evaluate the following expression: tan("cosec"^(-1)65/63)

    Text Solution

    |

  3. Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

    Text Solution

    |

  4. Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

    Text Solution

    |

  5. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  6. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  7. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  8. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  9. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  10. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  11. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  12. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  13. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  14. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  15. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  16. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  17. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  18. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  19. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  20. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |