Home
Class 12
MATHS
Evaluate the following expression: cos...

Evaluate the following expression:
`cos("sin"^(-1)4/5+"cos"^(-1)2/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos(\sin^{-1}(4/5) + \cos^{-1}(2/3)) \), we can follow these steps: ### Step 1: Define Variables Let: - \( a = \sin^{-1}(4/5) \) - \( b = \cos^{-1}(2/3) \) ### Step 2: Find Sine and Cosine Values From the definitions: - \( \sin(a) = 4/5 \) - \( \cos(b) = 2/3 \) ### Step 3: Calculate \( \cos(a) \) Using the Pythagorean identity: \[ \cos(a) = \sqrt{1 - \sin^2(a)} = \sqrt{1 - (4/5)^2} \] Calculating \( (4/5)^2 \): \[ (4/5)^2 = 16/25 \] Thus, \[ \cos(a) = \sqrt{1 - 16/25} = \sqrt{9/25} = \frac{3}{5} \] ### Step 4: Calculate \( \sin(b) \) Using the Pythagorean identity: \[ \sin(b) = \sqrt{1 - \cos^2(b)} = \sqrt{1 - (2/3)^2} \] Calculating \( (2/3)^2 \): \[ (2/3)^2 = 4/9 \] Thus, \[ \sin(b) = \sqrt{1 - 4/9} = \sqrt{5/9} = \frac{\sqrt{5}}{3} \] ### Step 5: Use the Cosine Addition Formula Now we need to find \( \cos(a + b) \) using the formula: \[ \cos(a + b) = \cos(a)\cos(b) - \sin(a)\sin(b) \] Substituting the values we found: \[ \cos(a + b) = \left(\frac{3}{5}\right)\left(\frac{2}{3}\right) - \left(\frac{4}{5}\right)\left(\frac{\sqrt{5}}{3}\right) \] ### Step 6: Simplify the Expression Calculating each term: 1. \( \cos(a)\cos(b) = \frac{3}{5} \cdot \frac{2}{3} = \frac{2}{5} \) 2. \( \sin(a)\sin(b) = \frac{4}{5} \cdot \frac{\sqrt{5}}{3} = \frac{4\sqrt{5}}{15} \) Now substituting back: \[ \cos(a + b) = \frac{2}{5} - \frac{4\sqrt{5}}{15} \] ### Step 7: Find a Common Denominator The common denominator between 5 and 15 is 15: \[ \cos(a + b) = \frac{6}{15} - \frac{4\sqrt{5}}{15} = \frac{6 - 4\sqrt{5}}{15} \] ### Final Answer Thus, the value of the expression \( \cos(\sin^{-1}(4/5) + \cos^{-1}(2/3)) \) is: \[ \frac{6 - 4\sqrt{5}}{15} \] ---

To evaluate the expression \( \cos(\sin^{-1}(4/5) + \cos^{-1}(2/3)) \), we can follow these steps: ### Step 1: Define Variables Let: - \( a = \sin^{-1}(4/5) \) - \( b = \cos^{-1}(2/3) \) ### Step 2: Find Sine and Cosine Values ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following expression: sin("cos"^(-1)3/5)

Evaluate the following expression: tan("cos"^(-1)1/3)

Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Find the value of the following expression: sin(sin^(-1)x+cos^(-1)x),|x|,le1

Find the simplified value of the following expression: tan["cos"^(-1)1/2+tan^(-1)(-1/(sqrt(3)))]

Evaluate the following: sin^(-1)(sinpi/4) (ii) cos^(-1)(cos2pi/3) tan^(-1)(tanpi/3)

Evaluate the following cos [ cos^(-1) ( (-1)/3) - sin^(-1) ( 1/3)] .

Evaluate the following : sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) .

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Evaluate the following expression: tan("cosec"^(-1)65/63)

    Text Solution

    |

  2. Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

    Text Solution

    |

  3. Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

    Text Solution

    |

  4. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  5. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  6. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  7. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  8. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  9. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  10. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  11. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  12. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  13. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  14. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  15. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  16. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  17. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  18. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  19. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  20. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |