Home
Class 12
MATHS
Evaluate the following expression: sec...

Evaluate the following expression:
`sec(tan{tan^(-1)(-(pi)/3)})`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sec(\tan(\tan^{-1}(-\frac{\pi}{3}))) \), we can follow these steps: ### Step 1: Simplify the Inner Function We start with the innermost function, which is \( \tan^{-1}(-\frac{\pi}{3}) \). The tangent inverse function gives us an angle whose tangent is the input value. ### Step 2: Determine the Angle The value \( -\frac{\pi}{3} \) corresponds to an angle in the fourth quadrant. Therefore, we can express this as: \[ \tan^{-1}(-\frac{\pi}{3}) = -\frac{\pi}{3} \] ### Step 3: Substitute Back into the Expression Now we substitute this back into the expression: \[ \tan(-\frac{\pi}{3}) \] ### Step 4: Calculate the Tangent The tangent of \( -\frac{\pi}{3} \) can be calculated as: \[ \tan(-\frac{\pi}{3}) = -\tan(\frac{\pi}{3}) = -\sqrt{3} \] ### Step 5: Substitute into the Secant Function Now we substitute this value into the secant function: \[ \sec(-\sqrt{3}) \] ### Step 6: Evaluate the Secant The secant function is defined as the reciprocal of the cosine function. We need to find the angle whose tangent is \( -\sqrt{3} \). The angle corresponding to \( -\sqrt{3} \) is \( -\frac{\pi}{3} \), which means: \[ \sec(-\frac{\pi}{3}) = \frac{1}{\cos(-\frac{\pi}{3})} \] ### Step 7: Calculate the Cosine The cosine of \( -\frac{\pi}{3} \) is: \[ \cos(-\frac{\pi}{3}) = \cos(\frac{\pi}{3}) = \frac{1}{2} \] ### Step 8: Final Calculation Thus, we have: \[ \sec(-\frac{\pi}{3}) = \frac{1}{\frac{1}{2}} = 2 \] ### Final Answer The value of the expression \( \sec(\tan(\tan^{-1}(-\frac{\pi}{3}))) \) is: \[ \boxed{2} \] ---

To evaluate the expression \( \sec(\tan(\tan^{-1}(-\frac{\pi}{3}))) \), we can follow these steps: ### Step 1: Simplify the Inner Function We start with the innermost function, which is \( \tan^{-1}(-\frac{\pi}{3}) \). The tangent inverse function gives us an angle whose tangent is the input value. ### Step 2: Determine the Angle The value \( -\frac{\pi}{3} \) corresponds to an angle in the fourth quadrant. Therefore, we can express this as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following expression: tan("cos"^(-1)1/3)

Evaluate the following expression: tan("cosec"^(-1)65/63)

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Find the simplified value of the following expression: tan["cos"^(-1)1/2+tan^(-1)(-1/(sqrt(3)))]

Evaluate the following: (i) tan{2\ tan^(-1)(1/5)-pi/4} (ii) tan(1/2\ sin^(-1)(3/4)

Evaluate the following inverse trigonometric expression: tan^(-1)("tan"(2pi)/3)

Evaluate each of the following: tan^(-1)(tan(9pi)/4) (ii) tan^(-1)(tan1) (iii) tan^(-1)(tan2)

Find the value of the following inverse trigonometric expression: tan^(-1)(tan(-6))

Evaluate the following tan^(-1) { tan (- (7pi)/8)} .

Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(cos(7pi)/6) (iii) tan^(-1)(tan(3pi)/4)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

    Text Solution

    |

  2. Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

    Text Solution

    |

  3. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  4. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  5. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  6. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  7. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  8. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  9. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  10. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  11. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  12. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  13. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  14. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  15. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  16. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  17. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  18. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  19. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  20. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |