Home
Class 12
MATHS
Evaluate the following expression: cos...

Evaluate the following expression:
`cos tan^(-1)sin cot^(-1)(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \cos(\tan^{-1}(\sin(\cot^{-1}(1/2)))) \), we will follow these steps: ### Step 1: Evaluate \( \cot^{-1}(1/2) \) Let \( \theta = \cot^{-1}(1/2) \). This implies that \( \cot(\theta) = \frac{1}{2} \). Using the definition of cotangent: \[ \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{1}{2} \] We can represent this in a right triangle where the adjacent side is 1 and the opposite side is 2. ### Step 2: Find the hypotenuse Using the Pythagorean theorem: \[ \text{hypotenuse} = \sqrt{(\text{adjacent})^2 + (\text{opposite})^2} = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} \] ### Step 3: Find \( \sin(\theta) \) Now, we can find \( \sin(\theta) \): \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{2}{\sqrt{5}} \] ### Step 4: Substitute into the expression Now we substitute \( \sin(\theta) \) back into the expression: \[ \cos(\tan^{-1}(\sin(\cot^{-1}(1/2)))) = \cos(\tan^{-1}(\frac{2}{\sqrt{5}})) \] ### Step 5: Let \( y = \tan^{-1}(\frac{2}{\sqrt{5}}) \) This implies: \[ \tan(y) = \frac{2}{\sqrt{5}} \] ### Step 6: Find the hypotenuse for \( y \) Using the same triangle approach: - Opposite = 2 - Adjacent = \( \sqrt{5} \) Using the Pythagorean theorem again: \[ \text{hypotenuse} = \sqrt{(2)^2 + (\sqrt{5})^2} = \sqrt{4 + 5} = \sqrt{9} = 3 \] ### Step 7: Find \( \cos(y) \) Now we find \( \cos(y) \): \[ \cos(y) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{5}}{3} \] ### Final Result Thus, the final value of the expression is: \[ \cos(\tan^{-1}(\sin(\cot^{-1}(1/2)))) = \frac{\sqrt{5}}{3} \]

To evaluate the expression \( \cos(\tan^{-1}(\sin(\cot^{-1}(1/2)))) \), we will follow these steps: ### Step 1: Evaluate \( \cot^{-1}(1/2) \) Let \( \theta = \cot^{-1}(1/2) \). This implies that \( \cot(\theta) = \frac{1}{2} \). Using the definition of cotangent: \[ \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{1}{2} ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

Evaluate the following expression: tan("cos"^(-1)1/3)

Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

Find the simplified value of the following expression: tan["cos"^(-1)1/2+tan^(-1)(-1/(sqrt(3)))]

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)3/4)

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)(3/4)) , tan(cos^(-1)x)=sin(cot^(-1)(1/2))

Solve the following equation for x : cos(tan^-1 x) = sin(cot^-1(3/4))

Solve the following equation for x : cos(tan^-1 x) = sin(cot^-1(3/4))

For the principal values, evaluate each of the following: (i) tan^(-1){2cos(2sin^(-1)(1/2))} , (ii) "cot"[sin^(-1){cos(tan^(-1)1)}]

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

    Text Solution

    |

  2. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  3. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  4. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  5. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  6. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  7. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  8. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  9. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  10. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  11. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  12. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  13. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  14. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  15. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  16. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  17. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  18. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  19. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  20. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |