Home
Class 12
MATHS
Evaluate the following expression: tan...

Evaluate the following expression:
`tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan \left[ \cos^{-1} \left( \frac{3}{4} \right) + \sin^{-1} \left( \frac{3}{4} \right) - \sec^{-1}(3) \right] \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ \tan \left[ \cos^{-1} \left( \frac{3}{4} \right) + \sin^{-1} \left( \frac{3}{4} \right) - \sec^{-1}(3) \right] \] ### Step 2: Use the Identity We know that: \[ \sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2} \] Thus, we can rewrite: \[ \cos^{-1} \left( \frac{3}{4} \right) + \sin^{-1} \left( \frac{3}{4} \right) = \frac{\pi}{2} \] ### Step 3: Substitute into the Expression Substituting this into our expression gives: \[ \tan \left[ \frac{\pi}{2} - \sec^{-1}(3) \right] \] ### Step 4: Use the Co-Function Identity Using the identity \( \tan \left( \frac{\pi}{2} - x \right) = \cot(x) \), we have: \[ \tan \left[ \frac{\pi}{2} - \sec^{-1}(3) \right] = \cot(\sec^{-1}(3)) \] ### Step 5: Find the Value of \( \cot(\sec^{-1}(3)) \) Let \( \theta = \sec^{-1}(3) \). Then, by definition of secant: \[ \sec(\theta) = 3 \implies \cos(\theta) = \frac{1}{3} \] Using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \implies \sin^2(\theta) + \left( \frac{1}{3} \right)^2 = 1 \] \[ \sin^2(\theta) + \frac{1}{9} = 1 \implies \sin^2(\theta) = 1 - \frac{1}{9} = \frac{8}{9} \] \[ \sin(\theta) = \frac{2\sqrt{2}}{3} \] ### Step 6: Calculate \( \cot(\theta) \) Now, we can find \( \cot(\theta) \): \[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{\frac{1}{3}}{\frac{2\sqrt{2}}{3}} = \frac{1}{2\sqrt{2}} \] ### Step 7: Final Result Thus, we have: \[ \tan \left[ \cos^{-1} \left( \frac{3}{4} \right) + \sin^{-1} \left( \frac{3}{4} \right) - \sec^{-1}(3) \right] = \frac{1}{2\sqrt{2}} \] ### Final Answer \[ \boxed{\frac{1}{2\sqrt{2}}} \]

To evaluate the expression \( \tan \left[ \cos^{-1} \left( \frac{3}{4} \right) + \sin^{-1} \left( \frac{3}{4} \right) - \sec^{-1}(3) \right] \), we can follow these steps: ### Step 1: Rewrite the Expression We start with the expression: \[ \tan \left[ \cos^{-1} \left( \frac{3}{4} \right) + \sin^{-1} \left( \frac{3}{4} \right) - \sec^{-1}(3) \right] \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following expression: tan("cos"^(-1)1/3)

Evaluate the following expression: sin("cos"^(-1)3/5)

Evaluate the following expression: sin((pi)/6+"cos"^(-1)1/4)

Evaluate the following expressions : (1)/(2)+(3)/(4)=

Evaluate the following expression: cos("sin"^(-1)4/5+"cos"^(-1)2/3)

Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

Find the simplified value of the following expression: tan["cos"^(-1)1/2+tan^(-1)(-1/(sqrt(3)))]

Evaluate the following : sin^(2) ( tan^(-1) (3/4))

Evaluate the following cos [ cos^(-1) ( (-1)/3) - sin^(-1) ( 1/3)] .

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Evaluate the following expression: sec(tan{tan^(-1)(-(pi)/3)})

    Text Solution

    |

  2. Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

    Text Solution

    |

  3. Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-...

    Text Solution

    |

  4. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  5. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  6. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  7. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  8. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  9. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  10. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  11. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  12. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  13. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  14. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  15. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  16. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  17. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  18. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  19. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  20. Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=p...

    Text Solution

    |