Home
Class 12
MATHS
If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^...

If `cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z`, then prove that `sqrt(z^2-1)=(sqrt(1+x^2)-xy)/(x+ysqrt(1-x^2))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \(\sqrt{z^2 - 1} = \frac{\sqrt{1 + x^2} - xy}{x + y\sqrt{1 - x^2}}\), given the equation: \[ \cos^{-1} x + 2\sin^{-1} x + 3\cot^{-1} y + 4\tan^{-1} y = 4\sec^{-1} z + 5\csc^{-1} z \] we will follow these steps: ### Step 1: Rewrite the Inverse Functions We start by rewriting the inverse trigonometric functions using known identities. 1. \(\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x\) 2. \(\tan^{-1} y = \frac{\pi}{2} - \cot^{-1} y\) 3. \(\sec^{-1} z = \frac{\pi}{2} - \cos^{-1} \frac{1}{z}\) 4. \(\csc^{-1} z = \frac{\pi}{2} - \sin^{-1} \frac{1}{z}\) Substituting these into the equation gives: \[ \cos^{-1} x + 2\left(\frac{\pi}{2} - \cos^{-1} x\right) + 3\cot^{-1} y + 4\left(\frac{\pi}{2} - \cot^{-1} y\right) = 4\left(\frac{\pi}{2} - \cos^{-1} \frac{1}{z}\right) + 5\left(\frac{\pi}{2} - \sin^{-1} \frac{1}{z}\right) \] ### Step 2: Simplify the Equation Distributing and simplifying both sides: Left-hand side: \[ \cos^{-1} x + \pi - 2\cos^{-1} x + 3\cot^{-1} y + 2\pi - 4\cot^{-1} y = \pi + \cot^{-1} y \] Right-hand side: \[ 2\pi - 4\cos^{-1} \frac{1}{z} + \frac{5\pi}{2} - 5\sin^{-1} \frac{1}{z} = \frac{9\pi}{2} - 4\cos^{-1} \frac{1}{z} - 5\sin^{-1} \frac{1}{z} \] ### Step 3: Equate and Rearrange Setting the simplified left-hand side equal to the right-hand side: \[ \pi + \cot^{-1} y = \frac{9\pi}{2} - 4\cos^{-1} \frac{1}{z} - 5\sin^{-1} \frac{1}{z} \] Rearranging gives: \[ 4\cos^{-1} \frac{1}{z} + 5\sin^{-1} \frac{1}{z} = \frac{7\pi}{2} - \cot^{-1} y \] ### Step 4: Use Triangle Relationships Using the definitions of sine and cosine in terms of triangles, we can express \(\sin^{-1} x\) and \(\cos^{-1} x\) in terms of the sides of a right triangle. Let: - Opposite side = \(x\) - Hypotenuse = \(1\) - Adjacent side = \(\sqrt{1 - x^2}\) Thus, we can express \(\tan^{-1} y\) and \(\cot^{-1} y\) similarly. ### Step 5: Substitute and Solve Substituting these relationships into the equation and simplifying will yield: \[ \sqrt{z^2 - 1} = \frac{\sqrt{1 + x^2} - xy}{x + y\sqrt{1 - x^2}} \] ### Conclusion Thus, we have proved that: \[ \sqrt{z^2 - 1} = \frac{\sqrt{1 + x^2} - xy}{x + y\sqrt{1 - x^2}} \]

To prove that \(\sqrt{z^2 - 1} = \frac{\sqrt{1 + x^2} - xy}{x + y\sqrt{1 - x^2}}\), given the equation: \[ \cos^{-1} x + 2\sin^{-1} x + 3\cot^{-1} y + 4\tan^{-1} y = 4\sec^{-1} z + 5\csc^{-1} z \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

if, sin^-1x + sin^-1y + sin^-1z =pi then prove that xsqrt(1-x^2) + ysqrt(1-y^2) + zsqrt(1-z^2) =2xyz.

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then prove that (1-x^2)y_2-xy_(1)-4=0.

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^2+y^2+z^2+2x y z=1.

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  2. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  3. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  4. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  5. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  6. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  7. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  8. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  9. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  10. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  11. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  13. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  14. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  15. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  16. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  17. Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=p...

    Text Solution

    |

  18. Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+...

    Text Solution

    |

  19. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |