Home
Class 12
MATHS
Prove each of the following tan^(-1) x...

Prove each of the following
`tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x)/(sqrt(1+x^(2))`
`=-cos^(-1) (1)/(sqrt(1+x^(2))" when "x lt 0`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given equations for \( x < 0 \): 1. **Prove that \( \tan^{-1} x = -\pi + \cot^{-1} \frac{1}{x} \)** Let's start by letting \( \tan^{-1} x = \theta \). This means that: \[ \tan \theta = x \] Since \( \tan \theta = \frac{1}{\cot \theta} \), we can express \( \cot \theta \) as: \[ \cot \theta = \frac{1}{x} \] The range of \( \tan^{-1} x \) for \( x < 0 \) is \( (-\frac{\pi}{2}, 0) \). The cotangent function, \( \cot^{-1} \), is defined for \( (0, \pi) \). Therefore, we can express \( \theta \) in terms of \( \cot^{-1} \): \[ \theta = \cot^{-1} \frac{1}{x} - \pi \] Thus, we have: \[ \tan^{-1} x = -\pi + \cot^{-1} \frac{1}{x} \] 2. **Prove that \( \tan^{-1} x = \frac{\sin^{-1} x}{\sqrt{1+x^2}} \)** From the definition of tangent, we know: \[ \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{x}{1} \] The hypotenuse \( h \) can be calculated using the Pythagorean theorem: \[ h = \sqrt{x^2 + 1} \] Therefore, we can find \( \sin \theta \): \[ \sin \theta = \frac{x}{\sqrt{x^2 + 1}} \] Thus, we can express \( \theta \) in terms of \( \sin^{-1} \): \[ \theta = \sin^{-1} \left( \frac{x}{\sqrt{x^2 + 1}} \right) \] Hence, \[ \tan^{-1} x = \frac{\sin^{-1} x}{\sqrt{1+x^2}} \] 3. **Prove that \( \tan^{-1} x = -\cos^{-1} \frac{1}{\sqrt{1+x^2}} \)** From the previous step, we know: \[ \cos \theta = \frac{1}{h} = \frac{1}{\sqrt{x^2 + 1}} \] Therefore, we can express \( \theta \) in terms of \( \cos^{-1} \): \[ \theta = -\cos^{-1} \left( \frac{1}{\sqrt{1+x^2}} \right) \] Thus, \[ \tan^{-1} x = -\cos^{-1} \frac{1}{\sqrt{1+x^2}} \] ### Summary of Results: - \( \tan^{-1} x = -\pi + \cot^{-1} \frac{1}{x} \) - \( \tan^{-1} x = \frac{\sin^{-1} x}{\sqrt{1+x^2}} \) - \( \tan^{-1} x = -\cos^{-1} \frac{1}{\sqrt{1+x^2}} \)

To prove the given equations for \( x < 0 \): 1. **Prove that \( \tan^{-1} x = -\pi + \cot^{-1} \frac{1}{x} \)** Let's start by letting \( \tan^{-1} x = \theta \). This means that: \[ \tan \theta = x \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Prove the following: "cos"{tan^(-1){sin(cot^(-1)x)}}= sqrt((1+x^2)/(2+x^2))

Prove the following: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)),\ x\ \ (0,1)

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x

If y= sin^(-1)(x/(sqrt(1+x^2))) + cos^(-1)(1/(sqrt(1+x^2))) , prove that (dy)/(dx)=(2x)/(1+x^2) .

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

Number of values of x satisfying simultaneously sin^(-1) x = 2 tan^(-1) x " and " tan^(-1) sqrt(x(x-1)) + cosec^(-1) sqrt(1 + x - x^(2)) = pi/2 , is

The solution set of equation sin^(-1) sqrt(1-x^2) + cos^(-1) x = cot^(-1) (sqrt(1 - x^2)/x) - sin^(-1) x , is

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  2. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  3. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  4. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  5. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  6. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  7. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  8. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  9. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  10. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  11. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  13. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  14. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  15. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  16. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  17. Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=p...

    Text Solution

    |

  18. Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+...

    Text Solution

    |

  19. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |