Home
Class 12
MATHS
Express in terms of : cos^(-1)(2x^(2)-1)...

Express in terms of : `cos^(-1)(2x^(2)-1)` to `cos^(-1)x` for `-1lexlt0`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \cos^{-1}(2x^2 - 1) \) in terms of \( \cos^{-1}(x) \) for \( -1 < x < 0 \), we can follow these steps: ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \cos(\theta) \). - Since \( x \) is in the interval \( -1 < x < 0 \), this implies \( \theta \) is in the interval \( \frac{\pi}{2} < \theta < \pi \). **Hint**: Use the relationship between cosine and angles to express \( x \) in terms of \( \theta \). 2. **Rewrite the expression**: We need to express \( 2x^2 - 1 \) in terms of \( \theta \): \[ 2x^2 - 1 = 2(\cos(\theta))^2 - 1 \] 3. **Use the double angle identity**: Recall the double angle formula for cosine: \[ 2\cos^2(\theta) - 1 = \cos(2\theta) \] Therefore, \[ 2x^2 - 1 = \cos(2\theta) \] **Hint**: Remember the trigonometric identity that connects cosine of double angles to squares of cosine. 4. **Apply the inverse cosine**: Now we can write: \[ \cos^{-1}(2x^2 - 1) = \cos^{-1}(\cos(2\theta)) \] 5. **Determine the range**: Since \( \theta \) is in the interval \( \frac{\pi}{2} < \theta < \pi \), it follows that \( 2\theta \) will be in the interval \( \pi < 2\theta < 2\pi \). 6. **Use the property of inverse cosine**: The property of the inverse cosine function states that: \[ \cos^{-1}(\cos(x)) = x \quad \text{for } x \in [0, \pi] \] However, since \( 2\theta \) is in the interval \( (\pi, 2\pi) \), we can use: \[ \cos^{-1}(\cos(2\theta)) = 2\pi - 2\theta \] 7. **Substituting back for \( \theta \)**: Recall that \( \theta = \cos^{-1}(x) \): \[ \cos^{-1}(2x^2 - 1) = 2\pi - 2\cos^{-1}(x) \] ### Final Answer: Thus, we can express \( \cos^{-1}(2x^2 - 1) \) in terms of \( \cos^{-1}(x) \) as: \[ \cos^{-1}(2x^2 - 1) = 2\pi - 2\cos^{-1}(x) \]

To express \( \cos^{-1}(2x^2 - 1) \) in terms of \( \cos^{-1}(x) \) for \( -1 < x < 0 \), we can follow these steps: ### Step-by-Step Solution: 1. **Substitution**: Let \( x = \cos(\theta) \). - Since \( x \) is in the interval \( -1 < x < 0 \), this implies \( \theta \) is in the interval \( \frac{\pi}{2} < \theta < \pi \). **Hint**: Use the relationship between cosine and angles to express \( x \) in terms of \( \theta \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

If x in [-1, 0) then find the value of cos^(-1) (2x^(2) -1) -2 sin^(-1) x

If x in [-1, 0] , then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^(-1) x

Solve cos^(-1)x >cos^(-1)x^2

Solve cos^(-1)x >cos^(-1)x^2

The derivative of cos^(-1)(2x^2-1) with respect to cos^(-1)x is (a) 2 (b) 1/(2sqrt(1-x^2)) (c) 2//x (d) 1-x^2

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Differentiate cos^(-1)(2x^2-1) with respect to x , if -1

If x in [-1,0], then find the value of cos^(-1)(2x^2-1)-2sin^(-1)x

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  2. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  3. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  4. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  5. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  6. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  7. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  8. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  9. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  10. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  11. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  13. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  14. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  15. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  16. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  17. Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=p...

    Text Solution

    |

  18. Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+...

    Text Solution

    |

  19. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |