Home
Class 12
MATHS
Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2...

Solve for `x` : `cot^(-1)x+tan^(-1)3=(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1} x + \tan^{-1} 3 = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rearrange the equation Start by isolating \( \cot^{-1} x \): \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} 3 \] ### Step 2: Apply the cotangent function Now, take the cotangent of both sides: \[ \cot(\cot^{-1} x) = \cot\left(\frac{\pi}{2} - \tan^{-1} 3\right) \] ### Step 3: Use the cotangent identity Using the identity \( \cot\left(\frac{\pi}{2} - \theta\right) = \tan(\theta) \), we can rewrite the right side: \[ x = \tan(\tan^{-1} 3) \] ### Step 4: Simplify using the tangent identity Using the identity \( \tan(\tan^{-1} \theta) = \theta \): \[ x = 3 \] ### Final Answer Thus, the solution for \( x \) is: \[ \boxed{3} \] ---

To solve the equation \( \cot^{-1} x + \tan^{-1} 3 = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Rearrange the equation Start by isolating \( \cot^{-1} x \): \[ \cot^{-1} x = \frac{\pi}{2} - \tan^{-1} 3 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Solve for x : tan^(-1)x+2cot^(-1)x=(2pi)/3

solve the equation for the value of x : cot^(-1)(x) + tan^(-1)3 = pi/2

Solve for x : cot^(-1)x-cot^(-1)(x+2)=pi/(12) , where x >0

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x: tan^(-1)3x+tan^(-1)2x=pi/4

Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2

Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2

Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve : tan^(-1)2x+tan^(-1)3x=pi/4