Home
Class 12
MATHS
Prove that : "tan"^(-1)3/4+"sin"^(-1)5/1...

Prove that : `"tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \tan^{-1}\left(\frac{3}{4}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right) \), we will follow these steps: ### Step 1: Convert \( \tan^{-1}\left(\frac{3}{4}\right) \) to cosine Assume \( \theta = \tan^{-1}\left(\frac{3}{4}\right) \). This means: \[ \tan(\theta) = \frac{3}{4} \] In a right triangle, the opposite side (perpendicular) is 3 and the adjacent side (base) is 4. We can find the hypotenuse \( h \) using the Pythagorean theorem: \[ h = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] Now, we can find \( \cos(\theta) \): \[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{5} \] Thus, we can write: \[ \tan^{-1}\left(\frac{3}{4}\right) = \cos^{-1}\left(\frac{4}{5}\right) \] ### Step 2: Convert \( \sin^{-1}\left(\frac{5}{13}\right) \) to cosine Let \( \phi = \sin^{-1}\left(\frac{5}{13}\right) \). This means: \[ \sin(\phi) = \frac{5}{13} \] In a right triangle, the opposite side (perpendicular) is 5 and the hypotenuse is 13. We can find the adjacent side (base) using the Pythagorean theorem: \[ \text{adjacent} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \] Now, we can find \( \cos(\phi) \): \[ \cos(\phi) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{12}{13} \] Thus, we can write: \[ \sin^{-1}\left(\frac{5}{13}\right) = \cos^{-1}\left(\frac{12}{13}\right) \] ### Step 3: Combine the results Now we have: \[ \tan^{-1}\left(\frac{3}{4}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) \] ### Step 4: Use the cosine addition formula Using the formula for the sum of cosines: \[ \cos^{-1}(a) + \cos^{-1}(b) = \cos^{-1}(ab - \sqrt{(1-a^2)(1-b^2)}) \] Let \( a = \frac{4}{5} \) and \( b = \frac{12}{13} \): 1. Calculate \( ab \): \[ ab = \frac{4}{5} \cdot \frac{12}{13} = \frac{48}{65} \] 2. Calculate \( 1 - a^2 \): \[ 1 - a^2 = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] 3. Calculate \( 1 - b^2 \): \[ 1 - b^2 = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] 4. Calculate the square root: \[ \sqrt{(1-a^2)(1-b^2)} = \sqrt{\frac{9}{25} \cdot \frac{25}{169}} = \sqrt{\frac{9}{169}} = \frac{3}{13} \] ### Step 5: Combine to find the final cosine value Now substituting back: \[ \cos^{-1}\left(\frac{48}{65} - \frac{3}{13}\right) \] Convert \( \frac{3}{13} \) to have a common denominator: \[ \frac{3}{13} = \frac{15}{65} \] Thus: \[ \frac{48}{65} - \frac{15}{65} = \frac{33}{65} \] So we have: \[ \tan^{-1}\left(\frac{3}{4}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right) \] ### Conclusion Therefore, we have proved that: \[ \tan^{-1}\left(\frac{3}{4}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right) \]

To prove that \( \tan^{-1}\left(\frac{3}{4}\right) + \sin^{-1}\left(\frac{5}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right) \), we will follow these steps: ### Step 1: Convert \( \tan^{-1}\left(\frac{3}{4}\right) \) to cosine Assume \( \theta = \tan^{-1}\left(\frac{3}{4}\right) \). This means: \[ \tan(\theta) = \frac{3}{4} \] In a right triangle, the opposite side (perpendicular) is 3 and the adjacent side (base) is 4. We can find the hypotenuse \( h \) using the Pythagorean theorem: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)(63/16)=sin^(-1)(5/13)+cos^(-1)(3/5)

Prove that : tan^(-1)(63/16)=sin^(-1)\(5/13)+cos^(-1)(3/5)

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that : tan^(-1)(63)/(16)=sin^(-1)5/(13)+cos^(-1)3/5

Prove that: "cos"^(-1)63/65+2"tan"^(-1)1/5="sin"^(-1)3/5

Prove that: cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)

Prove that cos^(-1)4/5 + cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that: cos^(-1)4/5+cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  2. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  3. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  4. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  5. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  6. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  7. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  8. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  9. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  10. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  11. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  13. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  14. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  15. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  16. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  17. Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=p...

    Text Solution

    |

  18. Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+...

    Text Solution

    |

  19. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |