Home
Class 12
MATHS
Find the sum of each of the following se...

Find the sum of each of the following series :(i) `tan^-1(1/(x^2+x+1))+tan^-1 (1/(x^2+3x+3))+tan^-1(1/(x^2+5X+7))+tan^-1(1/x^2+7x+13))`......upto n.

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S_n = \tan^{-1}\left(\frac{1}{x^2+x+1}\right) + \tan^{-1}\left(\frac{1}{x^2+3x+3}\right) + \tan^{-1}\left(\frac{1}{x^2+5x+7}\right) + \tan^{-1\left(\frac{1}{x^2+7x+13}\right) + \ldots \text{ up to } n \] we can use the identity for the difference of inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab} \] ### Step 1: Rewrite the terms in the series The terms can be expressed as: - \(\tan^{-1}\left(\frac{1}{x^2 + 2kx + (k^2 - k + 1)}\right)\) for \(k = 1, 2, 3, \ldots, n\). ### Step 2: Identify the pattern Notice that the denominators can be rewritten: 1. \(x^2 + 1x + 1\) can be expressed as \(x^2 + 2(1)x + (1^2 - 1 + 1)\) 2. \(x^2 + 3x + 3\) can be expressed as \(x^2 + 2(2)x + (2^2 - 2 + 1)\) 3. \(x^2 + 5x + 7\) can be expressed as \(x^2 + 2(3)x + (3^2 - 3 + 1)\) 4. \(x^2 + 7x + 13\) can be expressed as \(x^2 + 2(4)x + (4^2 - 4 + 1)\) This suggests a general form for the \(k\)-th term. ### Step 3: Apply the identity Using the identity, we can pair the terms: \[ S_n = \left(\tan^{-1}(A) - \tan^{-1}(B)\right) + \left(\tan^{-1}(B) - \tan^{-1}(C)\right) + \ldots \] This leads to a telescoping series where most terms cancel out. ### Step 4: Simplify the expression After cancellation, we are left with: \[ S_n = \tan^{-1}(x + n) - \tan^{-1}(x) \] ### Step 5: Final expression Thus, the sum of the series is: \[ S_n = \tan^{-1}(x + n) - \tan^{-1}(x) \]

To find the sum of the series \[ S_n = \tan^{-1}\left(\frac{1}{x^2+x+1}\right) + \tan^{-1}\left(\frac{1}{x^2+3x+3}\right) + \tan^{-1}\left(\frac{1}{x^2+5x+7}\right) + \tan^{-1\left(\frac{1}{x^2+7x+13}\right) + \ldots \text{ up to } n \] we can use the identity for the difference of inverse tangents: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SCQ_TYPE|96 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Sum the series tan^-1 (x/(1+1*2x^2))+tan^-1 (x/(1+2*3x^2))+…+tan^-1 (x/(1+n*(n+1)x^2))

If y = tan^(-1) ((1)/(x^(2) + x + 1)) + tan^(-1) ((1)/( x^(2) + 3x + 3)) + tan^(-1) ((1)/( x^(2) + 5x + 7))+ tan^(-1) ((1)/( x^(2) +7x + 13)), x gt 0 and ((dy)/( dx))_(x=0)= ( - k )/( 1+ k) then the value of k is

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SUBJECTIVE_TYPE
  1. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  2. tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi, then prove that x + y + 2...

    Text Solution

    |

  3. If cos^(-1)x+2sin^(-1)x+3cot^(-1)y+4tan^(-1)y=4sec^(-1)z+5cosec^(-1)z,...

    Text Solution

    |

  4. Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x...

    Text Solution

    |

  5. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  6. Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

    Text Solution

    |

  7. sin^(-1)(2xsqrt(1-x^2)),x in [1/sqrt2,1] is equal to

    Text Solution

    |

  8. Express in terms of : cos^(-1)(2x^(2)-1) to cos^(-1)x for -1lexlt0

    Text Solution

    |

  9. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  10. Solve for x : cos(2sin^(-1)x)=1/3

    Text Solution

    |

  11. Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

    Text Solution

    |

  12. Solve : tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=pi/4

    Text Solution

    |

  13. Solve sin^(-1)x+sin^(-1)2x=pi/3dot

    Text Solution

    |

  14. Prove that : sin^(-1)8/(17)+sin^(-1)3/5=sin^(-1)(77)/(85)=tan^(-1)((77...

    Text Solution

    |

  15. Prove that : "tan"^(-1)3/4+"sin"^(-1)5/13="cos"^(-1)33/65

    Text Solution

    |

  16. Prove: sin^(-1)(1/sqrt5)+cot^(-1)3=pi/4

    Text Solution

    |

  17. Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=p...

    Text Solution

    |

  18. Find the sum of each of the following series :(i) tan^-1(1/(x^2+x+1))+...

    Text Solution

    |

  19. Find the sum of the series :tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^...

    Text Solution

    |

  20. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |