Home
Class 12
MATHS
The number of real solution of the equat...

The number of real solution of the equation
`sin^(-1) (underset(i=1)overset(oo)sum x^(i +1) -x underset(i=1)overset(oo)sum ((x)/(2))^(i))`
`= (pi)/(2) - cos^(-1) (underset(i=1)overset(oo)sum (-(x)/(2))^(i) - underset(i=1)overset(oo)sum (-x)^(i))` lying in the interval `(-(1)/(2), (1)/(2))` is ______.
(Here, the inverse trigonometric function `sin^(-1) x and cos^(-1) x` assume values in `[-(pi)/(2), (pi)/(2)] and [0, pi]` respectively)

Text Solution

Verified by Experts

The correct Answer is:
ab

NA
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The number of real solution of the equation sin^(-1) (sum_(i=1)^(oo) x^(i +1) -x sum_(i=1)^(oo) ((x)/(2))^(i)) = (pi)/(2) - cos^(-1) (sum_(i=1)^(oo) (-(x)/(2))^(i) - sum_(i=1)^(oo) (-x)^(i)) lying in the interval (-(1)/(2), (1)/(2)) is ______. (Here, the inverse trigonometric function sin^(-1) x and cos^(-1) x assume values in [-(pi)/(2), (pi)/(2)] and [0, pi] respectively)

Find the underset(k=1)overset(oo)sumunderset(n=1)overset(oo)sumk/(2^(n+k)) .

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

Let S_(k)=underset(ntooo)limunderset(i=0)overset(n)sum(1)/((k+1)^(i))." Then "underset(k=1)overset(n)sumkS_(k) equals

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

If f(x) = (a^(x))/(a^(x) + sqrt(a)), a gt 0 prove that (i) f(x) + f(1-x) = 1 (ii) underset(k=1)overset(2n-1)sum 2f ((k)/(2n)) = 2n-1 (iii) underset(k=1)overset(2n)sum 2f((k)/(2n+1)) = 2n

If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)sum b^(n), z = underset(n =0)overset(oo)sum C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

If function f(x) = (1+2x) has the domain (-(pi)/(2), (pi)/(2)) and co-domain (-oo, oo) then function is