Home
Class 12
MATHS
Domain of the function f(x) = (x+0. 5)^l...

Domain of the function f(x) = `(x+0. 5)^log(0. 5+x)((x^2+2x-3)/(4x^2-4x-3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = (x + 0.5)^{\log(0.5 + x) \left( \frac{x^2 + 2x - 3}{4x^2 - 4x - 3} \right)} \), we need to ensure that all components of the function are defined. ### Step 1: Determine the conditions for the logarithm The logarithm function \( \log(0.5 + x) \) is defined when its argument is positive: \[ 0.5 + x > 0 \implies x > -0.5 \] ### Step 2: Ensure the base of the logarithm is valid The base of the logarithm, \( 0.5 + x \), must also be positive and cannot be equal to 1: \[ 0.5 + x \neq 1 \implies x \neq 0.5 \] ### Step 3: Analyze the fraction Next, we need to ensure that the fraction \( \frac{x^2 + 2x - 3}{4x^2 - 4x - 3} \) is defined and positive. #### Step 3.1: Factor the numerator The numerator \( x^2 + 2x - 3 \) can be factored: \[ x^2 + 2x - 3 = (x - 1)(x + 3) \] #### Step 3.2: Factor the denominator The denominator \( 4x^2 - 4x - 3 \) can be factored: \[ 4x^2 - 4x - 3 = (2x + 3)(2x - 1) \] ### Step 4: Set up the inequality We need to find where the fraction is positive: \[ \frac{(x - 1)(x + 3)}{(2x + 3)(2x - 1)} > 0 \] ### Step 5: Find critical points The critical points from the factors are: - From the numerator: \( x = 1 \) and \( x = -3 \) - From the denominator: \( x = -\frac{3}{2} \) and \( x = \frac{1}{2} \) ### Step 6: Test intervals We will test the sign of the fraction in the intervals determined by these critical points: - Intervals: \( (-\infty, -3) \), \( (-3, -\frac{3}{2}) \), \( (-\frac{3}{2}, \frac{1}{2}) \), \( (\frac{1}{2}, 1) \), \( (1, \infty) \) 1. **For \( x < -3 \)**: Choose \( x = -4 \): \[ \frac{(-4 - 1)(-4 + 3)}{(2(-4) + 3)(2(-4) - 1)} = \frac{(-5)(-1)}{(-5)(-9)} > 0 \] Positive. 2. **For \( -3 < x < -\frac{3}{2} \)**: Choose \( x = -2 \): \[ \frac{(-2 - 1)(-2 + 3)}{(2(-2) + 3)(2(-2) - 1)} = \frac{(-3)(1)}{(-1)(-5)} < 0 \] Negative. 3. **For \( -\frac{3}{2} < x < \frac{1}{2} \)**: Choose \( x = 0 \): \[ \frac{(0 - 1)(0 + 3)}{(2(0) + 3)(2(0) - 1)} = \frac{(-1)(3)}{(3)(-1)} > 0 \] Positive. 4. **For \( \frac{1}{2} < x < 1 \)**: Choose \( x = 0.75 \): \[ \frac{(0.75 - 1)(0.75 + 3)}{(2(0.75) + 3)(2(0.75) - 1)} = \frac{(-0.25)(3.75)}{(4.5)(-0.5)} < 0 \] Negative. 5. **For \( x > 1 \)**: Choose \( x = 2 \): \[ \frac{(2 - 1)(2 + 3)}{(2(2) + 3)(2(2) - 1)} = \frac{(1)(5)}{(7)(3)} > 0 \] Positive. ### Step 7: Combine intervals The fraction is positive in the intervals: - \( (-\infty, -3) \) - \( (-\frac{3}{2}, \frac{1}{2}) \) - \( (1, \infty) \) ### Step 8: Combine with logarithm conditions Now we combine the conditions: 1. From the logarithm: \( x > -0.5 \) and \( x \neq 0.5 \) 2. From the fraction: \( (-\infty, -3) \cup (-\frac{3}{2}, \frac{1}{2}) \cup (1, \infty) \) ### Final Domain The final domain is: \[ (-\frac{3}{2}, -0.5) \cup (1, \infty) \]

To find the domain of the function \( f(x) = (x + 0.5)^{\log(0.5 + x) \left( \frac{x^2 + 2x - 3}{4x^2 - 4x - 3} \right)} \), we need to ensure that all components of the function are defined. ### Step 1: Determine the conditions for the logarithm The logarithm function \( \log(0.5 + x) \) is defined when its argument is positive: \[ 0.5 + x > 0 \implies x > -0.5 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Domain of the function f(x) =log_(0.5) (3x-x^(2)-2)

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Domain of the function, f(x)=[log_10 ((5x-x^2)/4)]^(1/2) is

Find the domain of the function : f(x)=(log)_((x-4))(x^2-11 x+24)

The domain of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(2)-x) is

Find the domain of the function f(x) =(x^2-3x+5)/(x^2-5x+4) .

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

Find the domain of the function : f(x)=3/(4-x^2)+(log)_(10)(x^3-x)

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. The domain of the function sqrt(log(1/3) log4 ([x]^2 - 5 )) is (where...

    Text Solution

    |

  2. Find the domain of the following function: f(x)=1/([|x-1|]+[|12-x|]-11...

    Text Solution

    |

  3. Domain of the function f(x) = (x+0. 5)^log(0. 5+x)((x^2+2x-3)/(4x^2-4x...

    Text Solution

    |

  4. Find the domain of the following function: f(x)=5/([(x-1)/2])-3^(sin^(...

    Text Solution

    |

  5. Find the domain of the following function: 3^(y)+2^(x^(4))=2^(4x^(2)-1...

    Text Solution

    |

  6. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  7. find the range of the function f(x)=1/(2{-x})-{x} occurs at x equals ...

    Text Solution

    |

  8. If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the rang...

    Text Solution

    |

  9. If a function is defined as f(x)=sqrt(log(h(x))g(x)), where g(x)=|sinx...

    Text Solution

    |

  10. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  11. Find the domain and range of the following function: f(x)=sqrt(log(1...

    Text Solution

    |

  12. f(x)=sin^-1[log2(x^2/2)] where [ . ] denotes the greatest integer func...

    Text Solution

    |

  13. Find the domain and range of the following function: f(x)=log([x-1])...

    Text Solution

    |

  14. Find the domain and range of the following function: f(x)=tan^(-1)(s...

    Text Solution

    |

  15. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  16. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  17. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  18. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  19. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  20. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |