Home
Class 12
MATHS
Find the domain of the following functio...

Find the domain of the following function: `f(x)=5/([(x-1)/2])-3^(sin^(-1)x^(2))+((7x+1)!)/(sqrt(x+1))`, where [.] denotes greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{5}{\left(\frac{x-1}{2}\right)} - 3^{\sin^{-1}(x^2)} + \frac{(7x+1)!}{\sqrt{x+1}} \), we need to analyze each component of the function for restrictions. ### Step 1: Analyze the first term \(\frac{5}{\left(\frac{x-1}{2}\right)}\) The denominator cannot be zero: \[ \frac{x-1}{2} \neq 0 \implies x - 1 \neq 0 \implies x \neq 1 \] **Hint:** The denominator of a fraction cannot be zero. ### Step 2: Analyze the second term \(-3^{\sin^{-1}(x^2)}\) The function \(\sin^{-1}(x^2)\) is defined only for \(x^2\) in the interval \([-1, 1]\). Since \(x^2 \geq 0\), we have: \[ 0 \leq x^2 \leq 1 \implies -1 \leq x \leq 1 \] **Hint:** The inverse sine function is defined for inputs between -1 and 1. ### Step 3: Analyze the third term \(\frac{(7x+1)!}{\sqrt{x+1}}\) 1. The factorial \((7x+1)!\) is defined only for non-negative integers: \[ 7x + 1 \geq 0 \implies 7x \geq -1 \implies x \geq -\frac{1}{7} \] 2. The square root \(\sqrt{x+1}\) requires: \[ x + 1 > 0 \implies x > -1 \] **Hint:** Factorials are defined for non-negative integers, and square roots are defined for non-negative values. ### Step 4: Combine the conditions From the analysis, we have the following conditions: 1. \(x \neq 1\) 2. \(-1 < x \leq 1\) 3. \(x \geq -\frac{1}{7}\) Now, we need to combine these intervals: - The condition \(-1 < x \leq 1\) gives us the interval \((-1, 1]\). - The condition \(x \geq -\frac{1}{7}\) gives us the interval \([- \frac{1}{7}, \infty)\). ### Step 5: Find the intersection of the intervals The intersection of the intervals \((-1, 1]\) and \([- \frac{1}{7}, \infty)\) is: \[ [-\frac{1}{7}, 1] \] However, since \(x \neq 1\), we exclude \(1\): \[ [-\frac{1}{7}, 1) \] ### Final Domain Thus, the domain of the function \(f(x)\) is: \[ \boxed{[-\frac{1}{7}, 1)} \]

To find the domain of the function \( f(x) = \frac{5}{\left(\frac{x-1}{2}\right)} - 3^{\sin^{-1}(x^2)} + \frac{(7x+1)!}{\sqrt{x+1}} \), we need to analyze each component of the function for restrictions. ### Step 1: Analyze the first term \(\frac{5}{\left(\frac{x-1}{2}\right)}\) The denominator cannot be zero: \[ \frac{x-1}{2} \neq 0 \implies x - 1 \neq 0 \implies x \neq 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the following functions. f(x)=(sin^(-1)(x-3))/(sqrt(9-x^(2)))

Find the domain of the function f(x)=3/([x/2])-5^(cos^(-1)x^(2))+( (2x+1)!)/(sqrt(x+1)) [.] denotes the greatest integar function.

Find the domain of each of the following function: f(x)=2^(sin^(-1)x)+1/(sqrt(x-2))

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Find the domain of following function: f(x)=sqrt(1-x)-"sin^(-1)((2x-1)/3)

Find the domain of the following functions: f(x)=sqrt((x-2)/(x+2))+sqrt((1-x)/(1+x))

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

Find the domain and range of the following function: f(x)=tan^(-1)(sqrt([x]+[-x]))+sqrt(2-|x|)+1/(x^(2)) (where [ ] denotes greatest integer function)

Find the domain of each of the following function: f(x)=sqrt(1-2x)+3sin^(-1)((3x-1)/2)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. Find the domain of the following function: f(x)=1/([|x-1|]+[|12-x|]-11...

    Text Solution

    |

  2. Domain of the function f(x) = (x+0. 5)^log(0. 5+x)((x^2+2x-3)/(4x^2-4x...

    Text Solution

    |

  3. Find the domain of the following function: f(x)=5/([(x-1)/2])-3^(sin^(...

    Text Solution

    |

  4. Find the domain of the following function: 3^(y)+2^(x^(4))=2^(4x^(2)-1...

    Text Solution

    |

  5. The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes t...

    Text Solution

    |

  6. find the range of the function f(x)=1/(2{-x})-{x} occurs at x equals ...

    Text Solution

    |

  7. If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the rang...

    Text Solution

    |

  8. If a function is defined as f(x)=sqrt(log(h(x))g(x)), where g(x)=|sinx...

    Text Solution

    |

  9. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  10. Find the domain and range of the following function: f(x)=sqrt(log(1...

    Text Solution

    |

  11. f(x)=sin^-1[log2(x^2/2)] where [ . ] denotes the greatest integer func...

    Text Solution

    |

  12. Find the domain and range of the following function: f(x)=log([x-1])...

    Text Solution

    |

  13. Find the domain and range of the following function: f(x)=tan^(-1)(s...

    Text Solution

    |

  14. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  15. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  16. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  17. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  18. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  19. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  20. Find the integral solutions to the equation [x][y]=x+y. Show that all ...

    Text Solution

    |