Home
Class 12
MATHS
f(x)=sin^-1[log2(x^2/2)] where [ . ] den...

`f(x)=sin^-1[log_2(x^2/2)]` where [ . ] denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \sin^{-1} \left[ \log_2 \left( \frac{x^2}{2} \right) \right] \), we need to ensure that the argument of the sine inverse function is within its valid range. The sine inverse function, \( \sin^{-1}(y) \), is defined for \( y \) in the interval \([-1, 1]\). ### Step-by-step Solution: 1. **Identify the Argument of the Function**: We have \( y = \left[ \log_2 \left( \frac{x^2}{2} \right) \right] \). We need to ensure that: \[ -1 \leq \left[ \log_2 \left( \frac{x^2}{2} \right) \right] \leq 1 \] 2. **Understanding the Greatest Integer Function**: The greatest integer function \( [y] \) gives the largest integer less than or equal to \( y \). For \( [y] \) to lie between -1 and 1, we have: \[ [y] = 0 \quad \text{or} \quad [y] = -1 \] 3. **Case 1: \( [y] = 0 \)**: This means: \[ 0 \leq \log_2 \left( \frac{x^2}{2} \right) < 1 \] - From \( 0 \leq \log_2 \left( \frac{x^2}{2} \right) \): \[ \frac{x^2}{2} \geq 1 \implies x^2 \geq 2 \implies |x| \geq \sqrt{2} \implies x \leq -\sqrt{2} \text{ or } x \geq \sqrt{2} \] - From \( \log_2 \left( \frac{x^2}{2} \right) < 1 \): \[ \frac{x^2}{2} < 2 \implies x^2 < 4 \implies |x| < 2 \implies -2 < x < 2 \] Combining these inequalities, we get: \[ x \in (-2, -\sqrt{2}] \cup [\sqrt{2}, 2) \] 4. **Case 2: \( [y] = -1 \)**: This means: \[ -1 \leq \log_2 \left( \frac{x^2}{2} \right) < 0 \] - From \( -1 \leq \log_2 \left( \frac{x^2}{2} \right) \): \[ \frac{x^2}{2} \geq \frac{1}{2} \implies x^2 \geq 1 \implies |x| \geq 1 \implies x \leq -1 \text{ or } x \geq 1 \] - From \( \log_2 \left( \frac{x^2}{2} \right) < 0 \): \[ \frac{x^2}{2} < 1 \implies x^2 < 2 \implies |x| < \sqrt{2} \implies -\sqrt{2} < x < \sqrt{2} \] Combining these inequalities, we get: \[ x \in (-\sqrt{2}, -1] \cup [1, \sqrt{2}) \] 5. **Final Domain**: Now, we combine the results from both cases: - From Case 1: \( (-2, -\sqrt{2}] \cup [\sqrt{2}, 2) \) - From Case 2: \( (-\sqrt{2}, -1] \cup [1, \sqrt{2}) \) The intersection of these intervals gives us: \[ x \in [-2, -1] \cup [1, 2] \] ### Conclusion: The domain of the function \( f(x) \) is: \[ \boxed{[-2, -1] \cup [1, 2]} \]

To find the domain of the function \( f(x) = \sin^{-1} \left[ \log_2 \left( \frac{x^2}{2} \right) \right] \), we need to ensure that the argument of the sine inverse function is within its valid range. The sine inverse function, \( \sin^{-1}(y) \), is defined for \( y \) in the interval \([-1, 1]\). ### Step-by-step Solution: 1. **Identify the Argument of the Function**: We have \( y = \left[ \log_2 \left( \frac{x^2}{2} \right) \right] \). We need to ensure that: \[ -1 \leq \left[ \log_2 \left( \frac{x^2}{2} \right) \right] \leq 1 ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

If f(x)=sin([x]pi)/(x^2+x+1) where [.] denotes the greatest integer function, then (A) f is one-one (B) f is not one-one and not constant (C) f is a constant function (D) none of these

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. f(x)=cos^(-1)sqrt(log([x])""abs(x)/x), where [*] denotes the greatest ...

    Text Solution

    |

  2. Find the domain and range of the following function: f(x)=sqrt(log(1...

    Text Solution

    |

  3. f(x)=sin^-1[log2(x^2/2)] where [ . ] denotes the greatest integer func...

    Text Solution

    |

  4. Find the domain and range of the following function: f(x)=log([x-1])...

    Text Solution

    |

  5. Find the domain and range of the following function: f(x)=tan^(-1)(s...

    Text Solution

    |

  6. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  7. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  8. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  9. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  10. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  11. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  12. Find the integral solutions to the equation [x][y]=x+y. Show that all ...

    Text Solution

    |

  13. Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if...

    Text Solution

    |

  14. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  15. Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cos...

    Text Solution

    |

  16. Let f(x)=(log)2(log)3(log)4(log)5(sin x+a^2)dot Find the set of values...

    Text Solution

    |

  17. Express cot(cosec^(-1)x) as an algebraic function of x.

    Text Solution

    |

  18. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  19. Find the inverse of f(x)={(x ,, x<1),(x^2 ,, 1lt=xlt=4),(8sqrt(x) ,, x...

    Text Solution

    |

  20. sin^(-1)((x^(2))/(4)+(y^(2))/(9))+cos^(-1)((x)/(2sqrt(2))+(y)/(3sqrt(2...

    Text Solution

    |