Home
Class 12
MATHS
If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx...

If `f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8)` then range of `f(x)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{\sin^2 x + 4 \sin x + 5}{2 \sin^2 x + 8 \sin x + 8} \), we can follow these steps: ### Step 1: Rewrite the Function The function can be rewritten by factoring out constants from the numerator and the denominator: \[ f(x) = \frac{\sin^2 x + 4 \sin x + 5}{2(\sin^2 x + 4 \sin x + 4)} \] This simplifies to: \[ f(x) = \frac{1}{2} \cdot \frac{\sin^2 x + 4 \sin x + 5}{\sin^2 x + 4 \sin x + 4} \] ### Step 2: Identify the Components Let \( y = \sin x \). Then we can express the function in terms of \( y \): \[ f(y) = \frac{y^2 + 4y + 5}{y^2 + 4y + 4} \] ### Step 3: Simplify the Function Notice that the denominator can be factored: \[ f(y) = \frac{y^2 + 4y + 5}{(y + 2)^2} \] This means we can rewrite the function as: \[ f(y) = \frac{1}{2} + \frac{1}{(y + 2)^2} \] ### Step 4: Determine the Range of \( y \) Since \( y = \sin x \), the range of \( y \) is: \[ -1 \leq y \leq 1 \] ### Step 5: Analyze the Function Behavior To find the minimum and maximum values of \( f(y) \), we need to evaluate it at the endpoints of the range of \( y \): 1. **At \( y = 1 \)**: \[ f(1) = \frac{1}{2} + \frac{1}{(1 + 2)^2} = \frac{1}{2} + \frac{1}{9} = \frac{4.5 + 1}{9} = \frac{5.5}{9} \approx 0.6111 \] 2. **At \( y = -1 \)**: \[ f(-1) = \frac{1}{2} + \frac{1}{(-1 + 2)^2} = \frac{1}{2} + 1 = 1.5 \] ### Step 6: Determine Minimum and Maximum Values - The minimum value occurs when \( y = 1 \), yielding \( f(1) = \frac{5}{9} \). - The maximum value occurs when \( y = -1 \), yielding \( f(-1) = 1 \). ### Conclusion: Range of \( f(x) \) Thus, the range of \( f(x) \) is: \[ \left[\frac{5}{9}, 1\right] \]

To find the range of the function \( f(x) = \frac{\sin^2 x + 4 \sin x + 5}{2 \sin^2 x + 8 \sin x + 8} \), we can follow these steps: ### Step 1: Rewrite the Function The function can be rewritten by factoring out constants from the numerator and the denominator: \[ f(x) = \frac{\sin^2 x + 4 \sin x + 5}{2(\sin^2 x + 4 \sin x + 4)} \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x) =8/(sinx+3)

Let f:[pi,3pi//2] to R be a function given by f(x)=[sinx]+[1+sinx]+[2+ sinx] Then , the range of f(x) is

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Find the range of f(x)=sin^2x-3sinx+2

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-sinx+1.

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x) = sinx - sin2x in [0,pi]

Statement 1: The range of f(x)=sin^(2)x-sinx+1 is [3/4,oo) . Statemen 2: The range of f(x)=x^(2)-x+1 is [3/4,oo)AAxepsilonR .

Find the range of f(x)=(2sin^2x+2sinx+3)/(sin^2x+sinx+1)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. Find the domain and range of the following function: f(x)=log([x-1])...

    Text Solution

    |

  2. Find the domain and range of the following function: f(x)=tan^(-1)(s...

    Text Solution

    |

  3. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  4. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  5. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  6. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  7. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  8. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  9. Find the integral solutions to the equation [x][y]=x+y. Show that all ...

    Text Solution

    |

  10. Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if...

    Text Solution

    |

  11. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  12. Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cos...

    Text Solution

    |

  13. Let f(x)=(log)2(log)3(log)4(log)5(sin x+a^2)dot Find the set of values...

    Text Solution

    |

  14. Express cot(cosec^(-1)x) as an algebraic function of x.

    Text Solution

    |

  15. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  16. Find the inverse of f(x)={(x ,, x<1),(x^2 ,, 1lt=xlt=4),(8sqrt(x) ,, x...

    Text Solution

    |

  17. sin^(-1)((x^(2))/(4)+(y^(2))/(9))+cos^(-1)((x)/(2sqrt(2))+(y)/(3sqrt(2...

    Text Solution

    |

  18. If alpha=2 tan^-1((1+x)/(1-x)) and B= sin^-1((1-x^2)/(1+x^2)) for ...

    Text Solution

    |

  19. Solve {cos^(-1)x}+[tan^(-1)x]=0 for real values of x. Where {.} and [....

    Text Solution

    |

  20. Find the set of all real values of x satisfying the inequality sec^(-1...

    Text Solution

    |