Home
Class 12
MATHS
Find range of the function f(x)=log(2)[3...

Find range of the function `f(x)=log_(2)[3x-[x+[x+[x]]]]`
(where [.] is greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \log_2 \left[ 3x - \left[ x + \left[ x + \left[ x \right] \right] \right] \right] \right] \), where \([.]\) denotes the greatest integer function, we will break down the problem step by step. ### Step 1: Simplify the Function The function can be rewritten as: \[ f(x) = \log_2 \left[ 3x - 3\left[ x \right] \right] \] This is because \(\left[ x + \left[ x + \left[ x \right] \right] \right] = 3\left[ x \right]\). ### Step 2: Analyze the Argument of the Logarithm For the logarithm to be defined, the argument must be greater than 0: \[ 3x - 3\left[ x \right] > 0 \] This simplifies to: \[ 3(x - \left[ x \right]) > 0 \] Since \(x - \left[ x \right]\) is the fractional part of \(x\), denoted as \(\{x\}\), we have: \[ 3\{x\} > 0 \quad \Rightarrow \quad \{x\} > 0 \] This means \(x\) cannot be an integer. ### Step 3: Determine the Values of \(x\) The fractional part \(\{x\}\) lies in the interval \( (0, 1) \). Therefore, \(x\) can be expressed as: \[ x = n + r \quad \text{where } n \in \mathbb{Z} \text{ and } 0 < r < 1 \] This means \(x\) can take any value in the intervals \( (n, n+1) \) for integers \(n\). ### Step 4: Find the Range of \(f(x)\) Now, substituting \(x = n + r\) into the function: \[ f(n + r) = \log_2 \left[ 3(n + r) - 3n \right] = \log_2 (3r) \] Since \(r\) varies from \(0\) to \(1\), \(3r\) varies from \(0\) to \(3\). Therefore, the logarithm will take values from: \[ \log_2(0) \text{ (undefined) to } \log_2(3) \] However, since \(r\) cannot be \(0\), we consider the limit as \(r\) approaches \(0\), which leads to: \[ \lim_{r \to 0^+} \log_2(3r) = -\infty \] Thus, the range of \(f(x)\) is: \[ (-\infty, \log_2(3)) \] ### Final Answer The range of the function \( f(x) = \log_2 \left[ 3x - \left[ x + \left[ x + \left[ x \right] \right] \right] \right] \right] \) is: \[ (-\infty, \log_2(3)) \]

To find the range of the function \( f(x) = \log_2 \left[ 3x - \left[ x + \left[ x + \left[ x \right] \right] \right] \right] \right] \), where \([.]\) denotes the greatest integer function, we will break down the problem step by step. ### Step 1: Simplify the Function The function can be rewritten as: \[ f(x) = \log_2 \left[ 3x - 3\left[ x \right] \right] \] This is because \(\left[ x + \left[ x + \left[ x \right] \right] \right] = 3\left[ x \right]\). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

let A be the greatest value of the function f(x)=log _(x) [x], (where [.] denotes gratest integer function) and B be the least value of the function g (x) = |sin x | +|cos x| , then :

Find the domain and range of the following function: f(x)=log_([x-1])sinx, where [ ] denotes greatest integer function.

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is

The range of the function y=[x^2]-[x]^2 x in [0,2] (where [] denotes the greatest integer function), is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. Find the domain and range of the following function: f(x)=tan^(-1)(s...

    Text Solution

    |

  2. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  3. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  4. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  5. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  6. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  7. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  8. Find the integral solutions to the equation [x][y]=x+y. Show that all ...

    Text Solution

    |

  9. Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if...

    Text Solution

    |

  10. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  11. Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cos...

    Text Solution

    |

  12. Let f(x)=(log)2(log)3(log)4(log)5(sin x+a^2)dot Find the set of values...

    Text Solution

    |

  13. Express cot(cosec^(-1)x) as an algebraic function of x.

    Text Solution

    |

  14. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  15. Find the inverse of f(x)={(x ,, x<1),(x^2 ,, 1lt=xlt=4),(8sqrt(x) ,, x...

    Text Solution

    |

  16. sin^(-1)((x^(2))/(4)+(y^(2))/(9))+cos^(-1)((x)/(2sqrt(2))+(y)/(3sqrt(2...

    Text Solution

    |

  17. If alpha=2 tan^-1((1+x)/(1-x)) and B= sin^-1((1-x^2)/(1+x^2)) for ...

    Text Solution

    |

  18. Solve {cos^(-1)x}+[tan^(-1)x]=0 for real values of x. Where {.} and [....

    Text Solution

    |

  19. Find the set of all real values of x satisfying the inequality sec^(-1...

    Text Solution

    |

  20. Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1...

    Text Solution

    |