Home
Class 12
MATHS
The period of sin(pi/4)x+cos(pi/2)x+cos(...

The period of `sin(pi/4)x+cos(pi/2)x+cos(pi/3)x` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the period of the function \( \sin\left(\frac{\pi}{4} x\right) + \cos\left(\frac{\pi}{2} x\right) + \cos\left(\frac{\pi}{3} x\right) \), we will follow these steps: ### Step 1: Identify the periods of each term The period of the sine and cosine functions can be calculated using the formula: \[ \text{Period} = \frac{2\pi}{a} \] where \( a \) is the coefficient of \( x \). 1. For \( \sin\left(\frac{\pi}{4} x\right) \): - Coefficient \( a = \frac{\pi}{4} \) - Period = \( \frac{2\pi}{\frac{\pi}{4}} = 2\pi \cdot \frac{4}{\pi} = 8 \) 2. For \( \cos\left(\frac{\pi}{2} x\right) \): - Coefficient \( a = \frac{\pi}{2} \) - Period = \( \frac{2\pi}{\frac{\pi}{2}} = 2\pi \cdot \frac{2}{\pi} = 4 \) 3. For \( \cos\left(\frac{\pi}{3} x\right) \): - Coefficient \( a = \frac{\pi}{3} \) - Period = \( \frac{2\pi}{\frac{\pi}{3}} = 2\pi \cdot \frac{3}{\pi} = 6 \) ### Step 2: Find the Least Common Multiple (LCM) of the periods Now, we need to find the LCM of the periods calculated: - Periods: 8, 4, and 6. To find the LCM: - The prime factorization of each number: - \( 8 = 2^3 \) - \( 4 = 2^2 \) - \( 6 = 2^1 \cdot 3^1 \) The LCM is obtained by taking the highest power of each prime: - For \( 2 \): \( 2^3 \) - For \( 3 \): \( 3^1 \) Thus, the LCM is: \[ \text{LCM} = 2^3 \cdot 3^1 = 8 \cdot 3 = 24 \] ### Step 3: Conclusion The period of the function \( \sin\left(\frac{\pi}{4} x\right) + \cos\left(\frac{\pi}{2} x\right) + \cos\left(\frac{\pi}{3} x\right) \) is \( 24 \). ### Final Answer: The period is \( 24 \). ---

To find the period of the function \( \sin\left(\frac{\pi}{4} x\right) + \cos\left(\frac{\pi}{2} x\right) + \cos\left(\frac{\pi}{3} x\right) \), we will follow these steps: ### Step 1: Identify the periods of each term The period of the sine and cosine functions can be calculated using the formula: \[ \text{Period} = \frac{2\pi}{a} \] where \( a \) is the coefficient of \( x \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The equation 2 sin^(2) (pi/2 cos^(2) x)=1-cos (pi sin 2x) is safisfied by

The value of cos(pi+x)cos(pi+x)sec^(2)x is

The period of the function f(x)=cos2pi{2x}+ sin2 pi {2x} , is ( where {x} denotes the functional part of x)

If y="sec"(tan^(-1)x),t h e n (dy)/(dx) at x=1 is (a) cos(pi/4) (b) sin(pi/2) (c) sin(pi/6) (d) cos(pi/3)

The period of sin""(pi[x])/12+cos""(pi[x])/4+tan""(pi[x])/3 , where [x] represents the greatest integer less than or equal to x is

let cos(pi/7),cos((3pi)/7),cos((5pi)/7), the roots of equation 8x^3 - 4x^2 - 4x +1=0 then the value of sin(pi/14),sin((3pi)/14),sin((5pi)/14)

Statement-1: The period of the function f(x)=cos[2pi]^(2)x+cos[-2pi^(2)]x+[x] is pi, [x] being greatest integer function and [x] is a fractional part of x, is pi . Statement-2: The cosine function is periodic with period 2pi

The period of the function f(x)=cos2pi{2x}-sin2 pi {2x} , is ( where {x} denotes the functional part of x)

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x)) simplifies to

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  2. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  3. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  4. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  5. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  6. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  7. Find the integral solutions to the equation [x][y]=x+y. Show that all ...

    Text Solution

    |

  8. Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if...

    Text Solution

    |

  9. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  10. Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cos...

    Text Solution

    |

  11. Let f(x)=(log)2(log)3(log)4(log)5(sin x+a^2)dot Find the set of values...

    Text Solution

    |

  12. Express cot(cosec^(-1)x) as an algebraic function of x.

    Text Solution

    |

  13. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  14. Find the inverse of f(x)={(x ,, x<1),(x^2 ,, 1lt=xlt=4),(8sqrt(x) ,, x...

    Text Solution

    |

  15. sin^(-1)((x^(2))/(4)+(y^(2))/(9))+cos^(-1)((x)/(2sqrt(2))+(y)/(3sqrt(2...

    Text Solution

    |

  16. If alpha=2 tan^-1((1+x)/(1-x)) and B= sin^-1((1-x^2)/(1+x^2)) for ...

    Text Solution

    |

  17. Solve {cos^(-1)x}+[tan^(-1)x]=0 for real values of x. Where {.} and [....

    Text Solution

    |

  18. Find the set of all real values of x satisfying the inequality sec^(-1...

    Text Solution

    |

  19. Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1...

    Text Solution

    |

  20. Find the number of positive integral solution of the equation Tan^(-1...

    Text Solution

    |