Home
Class 12
MATHS
Express sin^(-1)x in terms of (i) cos^(-...

Express `sin^(-1)x` in terms of (i) `cos^(-1)sqrt(1-x^(2))` (ii) `"tan"^(-1)x/(sqrt(1-x^(2)))` (iii) `"cot"^(-1)(sqrt(1-x^(2)))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To express \( \sin^{-1} x \) in terms of \( \cos^{-1} \sqrt{1-x^2} \), \( \tan^{-1} \frac{x}{\sqrt{1-x^2}} \), and \( \cot^{-1} \frac{\sqrt{1-x^2}}{x} \), we will follow these steps: ### Step 1: Define \( \sin^{-1} x \) Let \( \theta = \sin^{-1} x \). This implies: \[ \sin \theta = x \] ### Step 2: Find \( \cos \theta \) Using the Pythagorean identity: \[ \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - x^2} \] ### Step 3: Express \( \sin^{-1} x \) in terms of \( \cos^{-1} \) From the relationship between sine and cosine: \[ \cos \theta = \sqrt{1 - x^2} \implies \theta = \cos^{-1}(\sqrt{1 - x^2}) \] Thus, we can write: \[ \sin^{-1} x = \cos^{-1}(\sqrt{1 - x^2}) \quad \text{for } x \in [0, 1] \] For \( x \in [-1, 0) \): \[ \sin^{-1} x = -\cos^{-1}(\sqrt{1 - x^2}) \] ### Step 4: Find \( \tan \theta \) Using the definition of tangent: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{x}{\sqrt{1 - x^2}} \] Thus, we can express \( \theta \) in terms of \( \tan^{-1} \): \[ \sin^{-1} x = \tan^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right) \quad \text{for } x \in [-1, 1] \] ### Step 5: Find \( \cot \theta \) Using the definition of cotangent: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{1 - x^2}}{x} \] Thus, we can express \( \theta \) in terms of \( \cot^{-1} \): \[ \sin^{-1} x = \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) \quad \text{for } x \in (0, 1] \] For \( x \in [-1, 0) \): \[ \sin^{-1} x = \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) - \pi \] ### Final Expressions Thus, we have: 1. \( \sin^{-1} x = \cos^{-1}(\sqrt{1 - x^2}) \) for \( x \in [0, 1] \) and \( \sin^{-1} x = -\cos^{-1}(\sqrt{1 - x^2}) \) for \( x \in [-1, 0) \). 2. \( \sin^{-1} x = \tan^{-1}\left(\frac{x}{\sqrt{1 - x^2}}\right) \) for \( x \in [-1, 1] \). 3. \( \sin^{-1} x = \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) \) for \( x \in (0, 1] \) and \( \sin^{-1} x = \cot^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right) - \pi \) for \( x \in [-1, 0) \).

To express \( \sin^{-1} x \) in terms of \( \cos^{-1} \sqrt{1-x^2} \), \( \tan^{-1} \frac{x}{\sqrt{1-x^2}} \), and \( \cot^{-1} \frac{\sqrt{1-x^2}}{x} \), we will follow these steps: ### Step 1: Define \( \sin^{-1} x \) Let \( \theta = \sin^{-1} x \). This implies: \[ \sin \theta = x \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If -1< x < 0 , then cos^(-1)x is equal to (a) sec^(-1)(1/ x) (b) pi-sin^(-1)sqrt(1+x^2) (c) pi+tan^(-1)(x/(sqrt(1-x^2))) (d) cot^(-1)(x/(sqrt(1-x^2))) .

(i) int(tan^(-1))/((1+x^(2)))dx" "(ii) int(1)/(sqrt(1-x^(2)) sin^(-1)x)dx

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

Find the value of (i) sin^(-1)(2^x) (ii) cos^(-1)sqrt(x^2-x+1) (iii) tan^(-1)(x^2)/(1+x^2) (iv) sec^(-1)(x+1/x)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  2. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  3. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  4. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  5. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  6. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  7. Find the integral solutions to the equation [x][y]=x+y. Show that all ...

    Text Solution

    |

  8. Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if...

    Text Solution

    |

  9. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  10. Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cos...

    Text Solution

    |

  11. Let f(x)=(log)2(log)3(log)4(log)5(sin x+a^2)dot Find the set of values...

    Text Solution

    |

  12. Express cot(cosec^(-1)x) as an algebraic function of x.

    Text Solution

    |

  13. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  14. Find the inverse of f(x)={(x ,, x<1),(x^2 ,, 1lt=xlt=4),(8sqrt(x) ,, x...

    Text Solution

    |

  15. sin^(-1)((x^(2))/(4)+(y^(2))/(9))+cos^(-1)((x)/(2sqrt(2))+(y)/(3sqrt(2...

    Text Solution

    |

  16. If alpha=2 tan^-1((1+x)/(1-x)) and B= sin^-1((1-x^2)/(1+x^2)) for ...

    Text Solution

    |

  17. Solve {cos^(-1)x}+[tan^(-1)x]=0 for real values of x. Where {.} and [....

    Text Solution

    |

  18. Find the set of all real values of x satisfying the inequality sec^(-1...

    Text Solution

    |

  19. Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1...

    Text Solution

    |

  20. Find the number of positive integral solution of the equation Tan^(-1...

    Text Solution

    |