Home
Class 12
MATHS
Find the solution of sin^(-1)(x/(1+x))-"...

Find the solution of `sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1)1/(sqrt(1+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin^{-1}\left(\frac{x}{1+x}\right) - \sin^{-1}\left(\frac{x-1}{x+1}\right) = \sin^{-1}\left(\frac{1}{\sqrt{1+x}}\right), \] we will use the property of inverse sine functions. ### Step 1: Rewrite the left-hand side using the property of inverse sine We know that: \[ \sin^{-1}(a) - \sin^{-1}(b) = \sin^{-1}\left(a \sqrt{1-b^2} - b \sqrt{1-a^2}\right), \] where \( a = \frac{x}{1+x} \) and \( b = \frac{x-1}{x+1} \). ### Step 2: Calculate \( 1 - b^2 \) and \( 1 - a^2 \) First, we need to calculate \( 1 - b^2 \) and \( 1 - a^2 \): 1. **For \( b \)**: \[ b = \frac{x-1}{x+1} \implies b^2 = \left(\frac{x-1}{x+1}\right)^2 = \frac{(x-1)^2}{(x+1)^2}. \] Therefore, \[ 1 - b^2 = 1 - \frac{(x-1)^2}{(x+1)^2} = \frac{(x+1)^2 - (x-1)^2}{(x+1)^2} = \frac{(x^2 + 2x + 1) - (x^2 - 2x + 1)}{(x+1)^2} = \frac{4x}{(x+1)^2}. \] 2. **For \( a \)**: \[ a = \frac{x}{1+x} \implies a^2 = \left(\frac{x}{1+x}\right)^2 = \frac{x^2}{(1+x)^2}. \] Therefore, \[ 1 - a^2 = 1 - \frac{x^2}{(1+x)^2} = \frac{(1+x)^2 - x^2}{(1+x)^2} = \frac{1 + 2x + x^2 - x^2}{(1+x)^2} = \frac{1 + 2x}{(1+x)^2}. \] ### Step 3: Substitute back into the equation Now substituting \( a \) and \( b \) into the property: \[ \sin^{-1}\left(\frac{x}{1+x} \sqrt{1 - b^2} - \frac{x-1}{x+1} \sqrt{1 - a^2}\right) = \sin^{-1}\left(\frac{1}{\sqrt{1+x}}\right). \] ### Step 4: Simplify the left-hand side Substituting the values we calculated: \[ \sin^{-1}\left(\frac{x}{1+x} \cdot \sqrt{\frac{4x}{(x+1)^2}} - \frac{x-1}{x+1} \cdot \sqrt{\frac{1 + 2x}{(1+x)^2}}\right). \] This simplifies to: \[ \sin^{-1}\left(\frac{2x\sqrt{x}}{(1+x)} - \frac{(x-1)\sqrt{1 + 2x}}{(1+x)}\right). \] ### Step 5: Set the two sides equal Now we can set the left-hand side equal to the right-hand side: \[ \frac{2x\sqrt{x} - (x-1)\sqrt{1 + 2x}}{(1+x)} = \frac{1}{\sqrt{1+x}}. \] ### Step 6: Cross-multiply and solve for \( x \) Cross-multiplying gives: \[ (2x\sqrt{x} - (x-1)\sqrt{1 + 2x})\sqrt{1+x} = 1 + x. \] ### Step 7: Solve the resulting equation This leads to a polynomial equation in \( x \). Solving this polynomial will yield the values of \( x \). ### Conclusion The solution of the equation is \( x \geq 0 \).

To solve the equation \[ \sin^{-1}\left(\frac{x}{1+x}\right) - \sin^{-1}\left(\frac{x-1}{x+1}\right) = \sin^{-1}\left(\frac{1}{\sqrt{1+x}}\right), \] we will use the property of inverse sine functions. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SSP|55 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE MAIN|15 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Find the range of sin^(-1)sqrt(x^(2)+x+1)

The solution of sin^(-1)|sin x|=sqrt(sin^(-1)|sin x|) is

The number of solutions of sin^(-1)x+sin^(-1)(1+x)=cos^(-1)x is/are :

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) is

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

int_((x sin^(-1)x)/(sqrt(1-x)^(2)))dx

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-HLP_TYPE
  1. If f(x)=(sin^2 x+4sinx+5)/(2sin^2x+8sinx+8) then range of f(x) is

    Text Solution

    |

  2. Find range of the function f(x)=log(2)[3x-[x+[x+[x]]]] (where [.] is...

    Text Solution

    |

  3. If f(x)=1/(x^(2)+1) and g(x)=sinpix+8{x/2} where {.} denotes fractiona...

    Text Solution

    |

  4. The period of sin(pi/4)x+cos(pi/2)x+cos(pi/3)x is

    Text Solution

    |

  5. Consider the function g(x) defined as g(x) (x^(2011-1)-1)=(x+1)(x^2+1)...

    Text Solution

    |

  6. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  7. Find the integral solutions to the equation [x][y]=x+y. Show that all ...

    Text Solution

    |

  8. Let f(x)=A x^2+B x+c ,w h e r eA ,B ,C are real numbers. Prove that if...

    Text Solution

    |

  9. Let g: Rvec(0,pi/3) be defined by g(x)=cos^(-1)((x^2-k)/(1+x^2)) . The...

    Text Solution

    |

  10. Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cos...

    Text Solution

    |

  11. Let f(x)=(log)2(log)3(log)4(log)5(sin x+a^2)dot Find the set of values...

    Text Solution

    |

  12. Express cot(cosec^(-1)x) as an algebraic function of x.

    Text Solution

    |

  13. Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1...

    Text Solution

    |

  14. Find the inverse of f(x)={(x ,, x<1),(x^2 ,, 1lt=xlt=4),(8sqrt(x) ,, x...

    Text Solution

    |

  15. sin^(-1)((x^(2))/(4)+(y^(2))/(9))+cos^(-1)((x)/(2sqrt(2))+(y)/(3sqrt(2...

    Text Solution

    |

  16. If alpha=2 tan^-1((1+x)/(1-x)) and B= sin^-1((1-x^2)/(1+x^2)) for ...

    Text Solution

    |

  17. Solve {cos^(-1)x}+[tan^(-1)x]=0 for real values of x. Where {.} and [....

    Text Solution

    |

  18. Find the set of all real values of x satisfying the inequality sec^(-1...

    Text Solution

    |

  19. Find the solution of sin^(-1)(x/(1+x))-"sin"^(-1)(x-1)/(x+1)="sin"^(-1...

    Text Solution

    |

  20. Find the number of positive integral solution of the equation Tan^(-1...

    Text Solution

    |