Home
Class 12
MATHS
f(x)=e^x : R^+ ->R and g(x)=x^2-x : R->R...

`f(x)=e^x : R^+ ->R and g(x)=x^2-x : R->R` Find domain and range of fog (x) and gof(x)

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the composite functions \( f(g(x)) \) and \( g(f(x)) \), we will follow these steps: ### Step 1: Define the Functions We have: - \( f(x) = e^x \) where \( f: \mathbb{R}^+ \to \mathbb{R} \) - \( g(x) = x^2 - x \) where \( g: \mathbb{R} \to \mathbb{R} \) ### Step 2: Find the Domain of \( f(g(x)) \) To find the domain of \( f(g(x)) \), we need to ensure that \( g(x) \) is in the domain of \( f \). Since \( f \) is defined for \( \mathbb{R}^+ \) (i.e., \( g(x) > 0 \)), we need to solve the inequality: \[ g(x) = x^2 - x > 0 \] ### Step 3: Solve the Inequality Factoring gives us: \[ x(x - 1) > 0 \] To solve this inequality, we find the critical points by setting \( g(x) = 0 \): \[ x(x - 1) = 0 \implies x = 0 \quad \text{or} \quad x = 1 \] Now we test the intervals determined by these critical points: \( (-\infty, 0) \), \( (0, 1) \), and \( (1, \infty) \). - For \( x < 0 \) (e.g., \( x = -1 \)): \( g(-1) = (-1)(-2) = 2 > 0 \) - For \( 0 < x < 1 \) (e.g., \( x = 0.5 \)): \( g(0.5) = (0.5)(-0.5) = -0.25 < 0 \) - For \( x > 1 \) (e.g., \( x = 2 \)): \( g(2) = (2)(1) = 2 > 0 \) Thus, the solution to the inequality \( g(x) > 0 \) is: \[ x \in (-\infty, 0) \cup (1, \infty) \] ### Step 4: Find the Range of \( f(g(x)) \) Next, we need to find the range of \( f(g(x)) = e^{g(x)} \). Since \( g(x) \) is a quadratic function, we find its minimum value to determine the range. The vertex of \( g(x) = x^2 - x \) occurs at: \[ x = -\frac{b}{2a} = \frac{1}{2} \] Calculating \( g\left(\frac{1}{2}\right) \): \[ g\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = \frac{1}{4} - \frac{2}{4} = -\frac{1}{4} \] Since \( g(x) \) has a minimum value of \( -\frac{1}{4} \) and approaches infinity as \( x \) goes to \( -\infty \) or \( +\infty \), the range of \( g(x) \) is: \[ g(x) \in \left[-\frac{1}{4}, \infty\right) \] Thus, the range of \( f(g(x)) = e^{g(x)} \) is: \[ f(g(x)) \in \left[e^{-\frac{1}{4}}, \infty\right) \] ### Step 5: Find the Domain of \( g(f(x)) \) Now, we find \( g(f(x)) \). Since \( f(x) \) is defined for all \( x \in \mathbb{R}^+ \), the domain of \( g(f(x)) \) is: \[ x \in \mathbb{R}^+ \] ### Step 6: Find the Range of \( g(f(x)) \) We compute \( g(f(x)) = g(e^x) = (e^x)^2 - e^x = e^{2x} - e^x \). To find the range, we analyze the function \( h(x) = e^{2x} - e^x \). 1. As \( x \to 0 \), \( h(0) = 1 - 1 = 0 \). 2. As \( x \to \infty \), \( h(x) \to \infty \). The function \( h(x) \) is always increasing for \( x > 0 \) since its derivative \( h'(x) = 2e^{2x} - e^x \) is positive for \( x > 0 \). Thus, the range of \( g(f(x)) \) is: \[ g(f(x)) \in [0, \infty) \] ### Summary of Results - **Domain of \( f(g(x)) \)**: \( (-\infty, 0) \cup (1, \infty) \) - **Range of \( f(g(x)) \)**: \( \left[e^{-\frac{1}{4}}, \infty\right) \) - **Domain of \( g(f(x)) \)**: \( (0, \infty) \) - **Range of \( g(f(x)) \)**: \( [0, \infty) \)

To find the domain and range of the composite functions \( f(g(x)) \) and \( g(f(x)) \), we will follow these steps: ### Step 1: Define the Functions We have: - \( f(x) = e^x \) where \( f: \mathbb{R}^+ \to \mathbb{R} \) - \( g(x) = x^2 - x \) where \( g: \mathbb{R} \to \mathbb{R} \) ### Step 2: Find the Domain of \( f(g(x)) \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If f,g:R->R be two functions defined as f(x)=|x|+x and g(x)=|x|-x . Find fog and gof . Hence find fog(-3) , fog(5) and gof(-2) .

Let f(X)=e^(x),R^(+)toR and g(x)=sinx,[-(pi)/2,(pi)/2]to[-1,1] Find domain and range of fog(X)

Find fog and gof , if f(x)=x^2 , g(x)=cosx

Let : R->R ; f(x)=sinx and g: R->R ; g(x)=x^2 find fog and gof .

If f : R rarr R and g : R rarr R be two mapping such that f(x) = sin x and g(x) = x^(2) , then find the values of (fog) (sqrt(pi))/(2) "and (gof)"((pi)/(3)) .

If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then the range of the function f(g(x)) where verdefined is

Find fog and gof if: f(x)=sinx,g(x)=x^(2)

If f, g,: R- R be two functions defined as f(x)=|x|+x and g(x)=|x|-x ,AAxR , Then find fog and gofdot Hence find fog(-3),fog(5) and gof(-2)dot

If f and g are two functions from R to R which are defined as f(x)=x^(2)+x+1 and g(x)=2x-1 for each x in R , then show that (fog) (x) ne (gof) (x).

If "f"("x")=x+7 and g(x)=x-7,\ x\ \ R , find (fog)(7)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SSP
  1. Define fog(x) and gof(x). Also find their domain and range. (i) f(x) =...

    Text Solution

    |

  2. Define fog(x) and gof(x). Also find their domain and range. f(x) = tan...

    Text Solution

    |

  3. f(x)=e^x : R^+ ->R and g(x)=x^2-x : R->R Find domain and range of fog...

    Text Solution

    |

  4. Determine whether the following function are even/odd/neither even nor...

    Text Solution

    |

  5. Determine whether the following function are even/odd/neither even nor...

    Text Solution

    |

  6. Determine whether the following function are even/odd/neither even nor...

    Text Solution

    |

  7. Determine f^(-1)(x), if given function is invertible. f:(-oo,1)to(-o...

    Text Solution

    |

  8. Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

    Text Solution

    |

  9. Find the value of : cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]

    Text Solution

    |

  10. Find the domain of the following y = sec^(-1) ( x^(2) + 3x + 1)

    Text Solution

    |

  11. Find the domain of: y=sin^(-1)((x^(2))/(1+x^(2)))

    Text Solution

    |

  12. Find the domain of: y=cot^(-1)(sqrt(x^(2)-1))

    Text Solution

    |

  13. Range of f(x)=sin^(- 1)x+sec^(- 1)x is

    Text Solution

    |

  14. Find the range of sin^(-1)sqrt(x^(2)+x+1)

    Text Solution

    |

  15. Evaluate the following : cos { sin ( sin^(-1) . pi/6)}.

    Text Solution

    |

  16. Find the value of : sin{cos("cos"^(-1)(3pi)/4)}

    Text Solution

    |

  17. Find the value of : cos^(-1)(cos 13)

    Text Solution

    |

  18. Find the value of : cos^(-1)(cos 4)

    Text Solution

    |

  19. Find the value of : tan^(-1){tan(-(7pi)/8)}

    Text Solution

    |

  20. find the value of tan^(-1){cot(-1/4)}

    Text Solution

    |