Home
Class 12
MATHS
Determine whether the following function...

Determine whether the following function are even/odd/neither even nor odd? `f(x)=xlog(x+sqrt(x^(2)+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = x \log(x + \sqrt{x^2 + 1}) \) is even, odd, or neither, we will follow these steps: ### Step 1: Understand the Definitions - A function \( f(x) \) is **even** if \( f(-x) = f(x) \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \). ### Step 2: Calculate \( f(-x) \) We start by substituting \(-x\) into the function: \[ f(-x) = -x \log(-x + \sqrt{(-x)^2 + 1}) \] ### Step 3: Simplify \( f(-x) \) Now we simplify the expression inside the logarithm: \[ f(-x) = -x \log(-x + \sqrt{x^2 + 1}) \] Next, we can rationalize the expression inside the logarithm: \[ f(-x) = -x \log\left(-x + \sqrt{x^2 + 1}\right) \] To simplify further, we multiply and divide by the conjugate: \[ = -x \log\left(\frac{(-x + \sqrt{x^2 + 1})(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x}\right) \] The numerator simplifies as follows: \[ (-x + \sqrt{x^2 + 1})(\sqrt{x^2 + 1} + x) = (\sqrt{x^2 + 1})^2 - x^2 = 1 \] Thus, we have: \[ f(-x) = -x \log\left(\frac{1}{\sqrt{x^2 + 1} + x}\right) \] Using the property of logarithms, we can rewrite this as: \[ f(-x) = -x \left(-\log(\sqrt{x^2 + 1} + x)\right) = x \log(\sqrt{x^2 + 1} + x) \] ### Step 4: Compare \( f(-x) \) with \( f(x) \) Now we need to compare \( f(-x) \) with \( f(x) \): \[ f(x) = x \log(x + \sqrt{x^2 + 1}) \] ### Step 5: Check for Evenness or Oddness We have: - \( f(-x) = x \log(\sqrt{x^2 + 1} + x) \) - \( f(x) = x \log(x + \sqrt{x^2 + 1}) \) Notice that: \[ \log(\sqrt{x^2 + 1} + x) = \log(x + \sqrt{x^2 + 1}) \] Thus, we find that: \[ f(-x) = f(x) \] ### Conclusion Since \( f(-x) = f(x) \), the function \( f(x) \) is **even**.

To determine whether the function \( f(x) = x \log(x + \sqrt{x^2 + 1}) \) is even, odd, or neither, we will follow these steps: ### Step 1: Understand the Definitions - A function \( f(x) \) is **even** if \( f(-x) = f(x) \). - A function \( f(x) \) is **odd** if \( f(-x) = -f(x) \). ### Step 2: Calculate \( f(-x) \) We start by substituting \(-x\) into the function: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Determine whether the following functions are even or odd or neither even nor odd: f(x)=sinx+cosx

Determine whether the following function are even/odd/neither even nor odd? f(x)=(e^(x)+e^(-x))/(e^(x)-e^(-x))

Determine whether the following functions are even or odd or neither even nor odd: f(x)=(x^(2)-1)|x|

Determine whether the following functions are even or odd or neither even nor odd: x+x^(2)

Determine whether the following function are even/odd/neither even nor odd? f:[-2,3]to[0,9],f(x)=x^(2)

Determine whether the following functions are even or odd or neither even nor odd: f(x)=x((a^(x)-1)/(a^(x)+1))

Determine whether the following functions are even or odd or neither even nor odd: sin(x^(2)+1)

Determine whether the following functions are even or odd or neither even nor odd: f(x)={(|lne^(x)|,,,xle-1),([2+x]+[2-x],,,-1ltxlt1),(e^(lnx),,,xge1):} ,where [.] is GIF

Determine whether the following functions are even or odd. {:((i)f(x)=log(x+sqrt(1+x^(2))),(ii)f(x)=x((a^(x)+1)/(a^(x)-1))),((iii)f(x)=sinx+cosx,(iv)f(x)=x^(2)-abs(x)),((v)f(x)=log((1-x)/(1+x)),(vi)f(x)={(sgn x)^(sgnx)}^(n)," n is an odd integer"):} {:((vii) f(x)=sgn(x)+x^(2),""),((viii)f(x+y)+f(x-y)=2f(x)*f(y)," where " f(0) ne 0 and x","y ne R.,""):}

Find whether the following functions are even or odd or none f(x) = log(x+sqrt(1+x^2))