Home
Class 12
MATHS
Find the value of : cosec[sec^(-1)(sqrt(...

Find the value of : `cosec[sec^(-1)(sqrt(2))+cot^(-1)(1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \csc\left[\sec^{-1}(\sqrt{2}) + \cot^{-1}(1)\right] \), we will follow these steps: ### Step 1: Evaluate \( \sec^{-1}(\sqrt{2}) \) The value \( \sec^{-1}(\sqrt{2}) \) corresponds to the angle whose secant is \( \sqrt{2} \). We know that: \[ \sec\left(\frac{\pi}{4}\right) = \sqrt{2} \] Thus, \[ \sec^{-1}(\sqrt{2}) = \frac{\pi}{4} \] ### Step 2: Evaluate \( \cot^{-1}(1) \) The value \( \cot^{-1}(1) \) corresponds to the angle whose cotangent is \( 1 \). We know that: \[ \cot\left(\frac{\pi}{4}\right) = 1 \] Thus, \[ \cot^{-1}(1) = \frac{\pi}{4} \] ### Step 3: Add the angles Now we can add the two angles we found: \[ \sec^{-1}(\sqrt{2}) + \cot^{-1}(1) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{2\pi}{4} = \frac{\pi}{2} \] ### Step 4: Evaluate \( \csc\left(\frac{\pi}{2}\right) \) Now we need to find \( \csc\left(\frac{\pi}{2}\right) \). We know that: \[ \sin\left(\frac{\pi}{2}\right) = 1 \] Thus, \[ \csc\left(\frac{\pi}{2}\right) = \frac{1}{\sin\left(\frac{\pi}{2}\right)} = \frac{1}{1} = 1 \] ### Final Answer Therefore, the value of \( \csc\left[\sec^{-1}(\sqrt{2}) + \cot^{-1}(1)\right] \) is: \[ \boxed{1} \]

To solve the expression \( \csc\left[\sec^{-1}(\sqrt{2}) + \cot^{-1}(1)\right] \), we will follow these steps: ### Step 1: Evaluate \( \sec^{-1}(\sqrt{2}) \) The value \( \sec^{-1}(\sqrt{2}) \) corresponds to the angle whose secant is \( \sqrt{2} \). We know that: \[ \sec\left(\frac{\pi}{4}\right) = \sqrt{2} ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of : cosec(sin^(-1)(-1/(sqrt(3))))

Find the principal value of sec^(-1)(sqrt2) .

Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^(-1)(-2)

Find the value of : sec("cot"^(-1)16/63)

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

Find the principal value of cosec^(-1)(2/sqrt3) .

Find the principal values of cot^(-1)sqrt(3) and cot^(-1)(-1)

Find the principal values of cot^(-1)sqrt(3) and cot^(-1)(-1)

Find the value of cosec{cot(cot^(-1)((3pi)/4))}

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)