Home
Class 12
MATHS
Find the range of sin^(-1)sqrt(x^(2)+x+1...

Find the range of `sin^(-1)sqrt(x^(2)+x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( y = \sin^{-1}(\sqrt{x^2 + x + 1}) \), we will follow these steps: ### Step 1: Determine the expression inside the inverse sine function We start with the expression inside the inverse sine function: \[ \sqrt{x^2 + x + 1} \] ### Step 2: Analyze the quadratic expression The expression \( x^2 + x + 1 \) is a quadratic function. To find its minimum value, we can use the vertex formula for a quadratic equation \( ax^2 + bx + c \), where the vertex \( x \) coordinate is given by: \[ x = -\frac{b}{2a} \] Here, \( a = 1 \) and \( b = 1 \), so: \[ x = -\frac{1}{2 \cdot 1} = -\frac{1}{2} \] ### Step 3: Calculate the minimum value of the quadratic Now, we substitute \( x = -\frac{1}{2} \) back into the quadratic to find the minimum value: \[ x^2 + x + 1 = \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) + 1 = \frac{1}{4} - \frac{1}{2} + 1 = \frac{1}{4} - \frac{2}{4} + \frac{4}{4} = \frac{3}{4} \] ### Step 4: Determine the minimum value of the square root Since \( \sqrt{x^2 + x + 1} \) is an increasing function, its minimum value occurs at the minimum value of \( x^2 + x + 1 \): \[ \text{Minimum of } \sqrt{x^2 + x + 1} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] ### Step 5: Determine the maximum value of the square root As \( x \) approaches infinity, \( x^2 + x + 1 \) also approaches infinity, hence: \[ \text{Maximum of } \sqrt{x^2 + x + 1} = \infty \] ### Step 6: Establish the range of the square root function Thus, the range of \( \sqrt{x^2 + x + 1} \) is: \[ \left[\frac{\sqrt{3}}{2}, \infty\right) \] ### Step 7: Determine the range of the inverse sine function The function \( \sin^{-1}(x) \) is defined for \( x \) in the interval \([-1, 1]\) and is an increasing function. Therefore, we need to restrict the range of \( \sqrt{x^2 + x + 1} \) to the interval \([0, 1]\): - The minimum value of \( \sqrt{x^2 + x + 1} \) is \( \frac{\sqrt{3}}{2} \approx 0.866 \), which is greater than \( 0.5 \). - The maximum value approaches infinity, but we only consider values up to \( 1 \). Thus, the effective range of \( \sin^{-1}(\sqrt{x^2 + x + 1}) \) is: \[ \left[\sin^{-1}\left(\frac{\sqrt{3}}{2}\right), \sin^{-1}(1)\right] \] ### Step 8: Calculate the specific values Calculating these values: \[ \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}, \quad \sin^{-1}(1) = \frac{\pi}{2} \] ### Final Answer Therefore, the range of \( \sin^{-1}(\sqrt{x^2 + x + 1}) \) is: \[ \left[\frac{\pi}{3}, \frac{\pi}{2}\right] \]

To find the range of the function \( y = \sin^{-1}(\sqrt{x^2 + x + 1}) \), we will follow these steps: ### Step 1: Determine the expression inside the inverse sine function We start with the expression inside the inverse sine function: \[ \sqrt{x^2 + x + 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)sqrt(x-1)+sqrt(5-1)

Find the range of f(x)=sqrt(x-1)+sqrt(5-x)

Find the range of f(x)=sqrt(1-sqrt(x^2-6x+9))