Home
Class 12
MATHS
Find the value of : sin{cos("cos"^(-1)(3...

Find the value of : `sin{cos("cos"^(-1)(3pi)/4)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin\left(\cos\left(\cos^{-1}\left(\frac{3\pi}{4}\right)\right)\right) \), we will follow these steps: ### Step 1: Understand the Inverse Cosine Let \( x = \cos^{-1}\left(\frac{3\pi}{4}\right) \). By definition of the inverse cosine function, this means: \[ \cos(x) = \frac{3\pi}{4} \] However, we need to check if \( \frac{3\pi}{4} \) is a valid input for the cosine function. The range of the cosine function is between -1 and 1, and since \( \frac{3\pi}{4} \) is greater than 1, this indicates that we have made a mistake in interpreting the problem. ### Step 2: Re-evaluate the Input Since \( \frac{3\pi}{4} \) is not a valid input for \( \cos^{-1} \), we need to reconsider the expression. The original question seems to be incorrectly stated. Assuming the intention was to find \( \sin\left(\cos\left(\cos^{-1}\left(\frac{3}{4}\right)\right)\right) \), we can proceed. ### Step 3: Define the New Variable Let \( x = \cos^{-1}\left(\frac{3}{4}\right) \). Therefore: \[ \cos(x) = \frac{3}{4} \] ### Step 4: Find \( \sin(x) \) Using the Pythagorean identity: \[ \sin^2(x) + \cos^2(x) = 1 \] Substituting \( \cos(x) \): \[ \sin^2(x) + \left(\frac{3}{4}\right)^2 = 1 \] \[ \sin^2(x) + \frac{9}{16} = 1 \] \[ \sin^2(x) = 1 - \frac{9}{16} = \frac{16}{16} - \frac{9}{16} = \frac{7}{16} \] \[ \sin(x) = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \] ### Step 5: Find \( \sin\left(\cos(x)\right) \) Now we need to find \( \sin\left(\cos(x)\right) \): \[ \cos(x) = \frac{3}{4} \] Thus, we need to find \( \sin\left(\frac{3}{4}\right) \). ### Step 6: Final Result The final expression is: \[ \sin\left(\cos\left(\cos^{-1}\left(\frac{3}{4}\right)\right)\right) = \sin\left(\frac{3}{4}\right) \] ### Conclusion The value of \( \sin\left(\cos\left(\cos^{-1}\left(\frac{3}{4}\right)\right)\right) \) is \( \frac{\sqrt{7}}{4} \).

To solve the problem \( \sin\left(\cos\left(\cos^{-1}\left(\frac{3\pi}{4}\right)\right)\right) \), we will follow these steps: ### Step 1: Understand the Inverse Cosine Let \( x = \cos^{-1}\left(\frac{3\pi}{4}\right) \). By definition of the inverse cosine function, this means: \[ \cos(x) = \frac{3\pi}{4} \] However, we need to check if \( \frac{3\pi}{4} \) is a valid input for the cosine function. The range of the cosine function is between -1 and 1, and since \( \frac{3\pi}{4} \) is greater than 1, this indicates that we have made a mistake in interpreting the problem. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of : cos{sin("sin"^(-1)(pi)/6)}

Find the values of sin (cos−1 3/5)

Find the value of : cos[(pi)/3-"sin"^(-1)(-1/2)]

Find the value of sin^(-1) ( cos. ( 33pi)/5) .

Find the value of |{:(cos((2pi)/(63)),,cos((3pi)/(70)),,cos((4pi)/(77))),(cos((pi)/(72)),,cos((2pi)/(80)),,cos((3pi)/(88))),(1,,cos((pi)/(90)),,cos((2pi)/(99))):}|

Find the value of cospi/7+cos(2pi)/7+cos(3pi)/7+cos(4pi)/7+cos(5pi)/7+cos(6pi)/+cos(7pi)/7

The value of cos^(-1)(cos'(3pi)/(2)) is

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]