Home
Class 12
MATHS
Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) ...

Define: `tan^(-1)((3x-x^(3))/(1-3x^(2)))` in terms of `tan^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To define \( \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \) in terms of \( \tan^{-1}(x) \), we can use the addition formula for the tangent inverse function. The formula states that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] ### Step-by-Step Solution: 1. **Identify the expression**: We need to express \( \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \). 2. **Use the addition formula**: We can express \( \frac{3x - x^3}{1 - 3x^2} \) in terms of \( \tan^{-1}(x) \). Notice that: - \( 3x \) can be thought of as \( \tan^{-1}(x) + \tan^{-1}(x) + \tan^{-1}(x) \). 3. **Express \( 3x \) in terms of \( \tan^{-1}(x) \)**: - Using the addition formula, we can write: \[ \tan^{-1}(x) + \tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1 - x^2}\right) \] - Now, add \( \tan^{-1}(x) \) again: \[ \tan^{-1}\left(\frac{2x}{1 - x^2}\right) + \tan^{-1}(x) = \tan^{-1}\left(\frac{\frac{2x}{1 - x^2} + x}{1 - \frac{2x \cdot x}{1 - x^2}}\right) \] 4. **Simplify the numerator**: - The numerator becomes: \[ \frac{2x + x(1 - x^2)}{1 - x^2} = \frac{2x + x - x^3}{1 - x^2} = \frac{3x - x^3}{1 - x^2} \] 5. **Simplify the denominator**: - The denominator becomes: \[ 1 - \frac{2x^2}{1 - x^2} = \frac{(1 - x^2) - 2x^2}{1 - x^2} = \frac{1 - 3x^2}{1 - x^2} \] 6. **Combine the results**: - Thus, we have: \[ \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) = \tan^{-1}(x) + \tan^{-1}(x) + \tan^{-1}(x) = 3\tan^{-1}(x) \] ### Final Result: \[ \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) = 3\tan^{-1}(x) \]

To define \( \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \) in terms of \( \tan^{-1}(x) \), we can use the addition formula for the tangent inverse function. The formula states that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If -1/(sqrt(3)) < x < 1/(sqrt(3)) , differentiate tan^(-1)((3x-x^3)/(1-3x^2)) with respect to tan^(-1)((2x)/(1-x^2)) .

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

Draw the graph of y=tan^(-1)((3x-x^(3))/(1-3x^(2))) .

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

The derivative of tan^(-1)((3x-x^(3))/(1-3x^(2))) w.r.t.x is

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if x >1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

Express in terms of : "tan"^(-1)(2x)/(1-x^(2) to tan^(-1)x for xgt1

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SSP
  1. Find the value of : cos^(-1)(cos 4)

    Text Solution

    |

  2. Find the value of : tan^(-1){tan(-(7pi)/8)}

    Text Solution

    |

  3. find the value of tan^(-1){cot(-1/4)}

    Text Solution

    |

  4. Find sin^(-1) ( sin theta ) , cos^(-1) ( cos theta) , tan^(-1) ( ta...

    Text Solution

    |

  5. Solve: 5tan^(-1)x+3cot^(-1)x=2pi

    Text Solution

    |

  6. Solve : 4sin^(-1)x=pi-cos^(-1)x

    Text Solution

    |

  7. Solve the following equations : sin^(-1)(x^(2)-2x+3)+cos^(-1)(x^(2)-x)...

    Text Solution

    |

  8. If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms...

    Text Solution

    |

  9. Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

    Text Solution

    |

  10. Find the value of : sec(cos^(-1)(2/3))

    Text Solution

    |

  11. Find the value of : cosec(sin^(-1)(-1/(sqrt(3))))

    Text Solution

    |

  12. Evaluate the following : tan ( cosec^(-1) sqrt(41)/4)

    Text Solution

    |

  13. Find the value of : sec("cot"^(-1)16/63)

    Text Solution

    |

  14. Find the value of sin(1/2cot^(-1)(-3/4))

    Text Solution

    |

  15. Evaluate: (i) tan(2\ tan^(-1)1/5-pi/4) (ii) tan{1/2cos^(-1)(sqrt(5))/3...

    Text Solution

    |

  16. If xepsilon(-1,1) and 2tan^(-1)x=tan^(-1)y then find y in term of x.

    Text Solution

    |

  17. Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi a...

    Text Solution

    |

  18. Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

    Text Solution

    |

  19. If tan^(-1) 4 + tan ^(-1) 5 = cot^(-1) lambda " , then find " 'la...

    Text Solution

    |

  20. Find the value of 2cos^(-1)3/(sqrt(13))+cot^(-1)(16)/(63)+1/2cos^(-1)7...

    Text Solution

    |