Home
Class 12
MATHS
If xepsilon(-1,1) and 2tan^(-1)x=tan^(-1...

If `xepsilon(-1,1)` and `2tan^(-1)x=tan^(-1)y` then find `y` in term of `x`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2\tan^{-1}(x) = \tan^{-1}(y)\) and find \(y\) in terms of \(x\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2\tan^{-1}(x) = \tan^{-1}(y) \] ### Step 2: Use the double angle formula for tangent Using the formula for the tangent of a double angle, we can express \(2\tan^{-1}(x)\) as: \[ \tan(2\tan^{-1}(x)) = \frac{2\tan(\tan^{-1}(x))}{1 - \tan^2(\tan^{-1}(x))} \] Since \(\tan(\tan^{-1}(x)) = x\), we have: \[ \tan(2\tan^{-1}(x)) = \frac{2x}{1 - x^2} \] ### Step 3: Set the equation for \(y\) Since we have \(2\tan^{-1}(x) = \tan^{-1}(y)\), we can equate the tangents: \[ y = \tan(2\tan^{-1}(x)) = \frac{2x}{1 - x^2} \] ### Step 4: Final expression for \(y\) Thus, we have found \(y\) in terms of \(x\): \[ y = \frac{2x}{1 - x^2} \] ### Summary The final result is: \[ y = \frac{2x}{1 - x^2} \] ---

To solve the equation \(2\tan^{-1}(x) = \tan^{-1}(y)\) and find \(y\) in terms of \(x\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2\tan^{-1}(x) = \tan^{-1}(y) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise HLP_TYPE|38 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If tan^-1 y=4 tan^-1x, then y is infinite if

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

If y=tan^(-1)x , find (d^2y)/(dx^2) in terms of y alone.

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=tan^(-1)x , find (d^2y)/(dx^2) in terms of y alone.

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If y=tan^-1x find (d^2y)/(dx^2) in terms of y alone.

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SSP
  1. Find the value of : cos^(-1)(cos 4)

    Text Solution

    |

  2. Find the value of : tan^(-1){tan(-(7pi)/8)}

    Text Solution

    |

  3. find the value of tan^(-1){cot(-1/4)}

    Text Solution

    |

  4. Find sin^(-1) ( sin theta ) , cos^(-1) ( cos theta) , tan^(-1) ( ta...

    Text Solution

    |

  5. Solve: 5tan^(-1)x+3cot^(-1)x=2pi

    Text Solution

    |

  6. Solve : 4sin^(-1)x=pi-cos^(-1)x

    Text Solution

    |

  7. Solve the following equations : sin^(-1)(x^(2)-2x+3)+cos^(-1)(x^(2)-x)...

    Text Solution

    |

  8. If x<0 , then write the value of cos^(-1)((1-x^2)/(1+x^2)) in terms...

    Text Solution

    |

  9. Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

    Text Solution

    |

  10. Find the value of : sec(cos^(-1)(2/3))

    Text Solution

    |

  11. Find the value of : cosec(sin^(-1)(-1/(sqrt(3))))

    Text Solution

    |

  12. Evaluate the following : tan ( cosec^(-1) sqrt(41)/4)

    Text Solution

    |

  13. Find the value of : sec("cot"^(-1)16/63)

    Text Solution

    |

  14. Find the value of sin(1/2cot^(-1)(-3/4))

    Text Solution

    |

  15. Evaluate: (i) tan(2\ tan^(-1)1/5-pi/4) (ii) tan{1/2cos^(-1)(sqrt(5))/3...

    Text Solution

    |

  16. If xepsilon(-1,1) and 2tan^(-1)x=tan^(-1)y then find y in term of x.

    Text Solution

    |

  17. Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi a...

    Text Solution

    |

  18. Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

    Text Solution

    |

  19. If tan^(-1) 4 + tan ^(-1) 5 = cot^(-1) lambda " , then find " 'la...

    Text Solution

    |

  20. Find the value of 2cos^(-1)3/(sqrt(13))+cot^(-1)(16)/(63)+1/2cos^(-1)7...

    Text Solution

    |