Home
Class 12
MATHS
Prove that |{:(1+a^(2)+a^(4),,1+ab+a^(2)...

Prove that `|{:(1+a^(2)+a^(4),,1+ab+a^(2)b^(2),,1+ac+a^(2)c^(2)),(1+ab+a^(2)b^(2) ,,1+b^(2)+b^(4),,1+bc+b^(2)c^(2)),(1+ac+a^(2)c^(2),, 1+bc+b^(2)c^(2),,1+c^(2)+c^(4)):}|`
`=(a-b)^(2)(b-c)^(2)(c-a)^(2)`

A

`(a-b)^(2)(b-c)^(2)(c-a)^(2)`

B

`2(a-b)(b-c)(c-a)`

C

`4(a-b)(b-c)(c-a)`

D

`(a+b+c)^(3)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Delta =|(1+a^2+a^4,1+ab+a^2b^2, 1+ac+a^2c^2), (1+ab+a^2b^2, 1+b^2+b^4, 1+bc+b^2c^2),(1+ac+a^2c^2, 1+bc+b^2c^2, 1+c^2c^4)| is equal to

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Prove that [[1+a^2+a^4, 1+a b+a^2b^2 ,1+a c+a^2c^2],[ 1+a b+a^2b^2, 1+b^2+b^4, 1+b c+b^2c^2],[ 1+a c+a^2c^2, 1+b c+b^2c^2, 1+c^2+c^2]]=(a-b)^2(b-c)^2(c-a)^2

Prove the identities: |{:(b^(2)+c^(2),,ab,,ac),(ab,,c^(2)+a^(2),,bc),(ca,,bc,,a^(2)+b^(2)):}|=4a^2b^2c^2

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c-a)(ab+bc+ca)

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x+(1)/(x)=2, thenx^(2)+(1)/(x^(2)) is equal to

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If (a+(1)/(a))^(2)=3, "then" a^(3)+(1)/(a^(3)) equats :

Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Prove that : |{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=4a^(2)b^(2)c^(2)

Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-c)(c-a)

RESONANCE ENGLISH-MATRICES & DETERMINANT-EXERCISE-2
  1. Flind the product of two matrices A =[[cos^(2) theta , cos theta sin...

    Text Solution

    |

  2. If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasin...

    Text Solution

    |

  3. If X=[(3,-4),(1,-1)] the value of X^(n) is

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The number of nxxn matrix A and B such that AB - BA = I is. . .

    Text Solution

    |

  6. If B, C are square matrices of order n and if A = B + C, BC = CB,C^2=0...

    Text Solution

    |

  7. How many 3 x 3 skew symmetric matrices can be formed using numbers -2,...

    Text Solution

    |

  8. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  9. Matrix A such that A^(2)=2A-I, where I is the identity matrix, then fo...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. " If "|{:(sin 0 cos phi,,sin 0 sin phi,,cos 0),(cos 0 cos phi,, cos 0 ...

    Text Solution

    |

  12. Prove that |{:(1+a^(2)+a^(4),,1+ab+a^(2)b^(2),,1+ac+a^(2)c^(2)),(1+ab+...

    Text Solution

    |

  13. Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(b...

    Text Solution

    |

  14. Value of the Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(...

    Text Solution

    |

  15. If Delta1=|[2a,b,e],[2d,e,f],[4x,2y,2z]|,Delta2=|[f,2d,e],[2z,4x,2y],[...

    Text Solution

    |

  16. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  17. Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"...

    Text Solution

    |

  18. If A is 3 xx 3 square matrix whose characteristics polynomical equatio...

    Text Solution

    |

  19. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |