Home
Class 12
MATHS
Value of the Delta=|{:(,a^(3)-x,a^(4)-x,...

Value of the `Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(7)-x),(,a^(7)-a,a^(8)-x,a^(9)-x):}|` then the value of `Delta_(1)-Delta_(2)` is (A) 0 (B) `(a^(3)-1)(a^(6)-1)(a^(9)-1)` (C) `(a^(3)+1)(a^(6)+1)(a^(9)+1)` (D) `a^(15)-1`

A

0

B

`(a^(3)-1)(a^(6)-1)(a^(9)-1)`

C

`(a^(3)+1)(a^(6)+1)(a^(9)+1)`

D

`a^(15)-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given in the question and find the value of \( \Delta_1 - \Delta_2 \). ### Step-by-Step Solution: 1. **Understanding the Determinant**: We have the determinant: \[ \Delta = \begin{vmatrix} a^3 - x & a^4 - x & a^5 - x \\ a^5 - x & a^6 - x & a^7 - x \\ a^7 - x & a^8 - x & a^9 - x \end{vmatrix} \] We need to find \( \Delta_1 - \Delta_2 \). 2. **Applying Properties of Determinants**: We can express the determinant in terms of two separate determinants: \[ \Delta = \begin{vmatrix} a^3 & a^4 & a^5 \\ a^5 & a^6 & a^7 \\ a^7 & a^8 & a^9 \end{vmatrix} - \begin{vmatrix} x & x & x \\ x & x & x \\ x & x & x \end{vmatrix} \] 3. **Evaluating the First Determinant**: The first determinant can be simplified. Notice that if we multiply the second column by \( a \) and the third column by \( a^2 \), we can factor out \( a \) and \( a^2 \) respectively: \[ \Delta_1 = a \cdot a^2 \cdot \begin{vmatrix} a^3 & a^4 & a^5 \\ a^5 & a^6 & a^7 \\ a^7 & a^8 & a^9 \end{vmatrix} \] 4. **Recognizing Redundant Columns**: After the transformation, we observe that the second and third columns become identical, leading to: \[ \Delta_1 = 0 \] 5. **Evaluating the Second Determinant**: The second determinant is: \[ \Delta_2 = \begin{vmatrix} x & x & x \\ x & x & x \\ x & x & x \end{vmatrix} \] Since all rows are identical, this determinant also evaluates to: \[ \Delta_2 = 0 \] 6. **Final Calculation**: Now, we compute \( \Delta_1 - \Delta_2 \): \[ \Delta_1 - \Delta_2 = 0 - 0 = 0 \] ### Conclusion: Thus, the value of \( \Delta_1 - \Delta_2 \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta_(2) = |(x,2,7),(x +1,3,-5),(x,7,4)| , then the value of x for which Delta_(1) + Delta_(2) = 0 , is

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

If int(x^(9)+x^(6)+x^(3))(2x^(6)+3x^(3)+6)^(1//3)dx=a(2x^(9)+3x^(6)+6x^(3))^(4//3)+c then the value of 48a must be _______

If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}| = ax^(3) +bx^(2)+cx+d , then

If Delta(x)=|{:(a,b,c),(6,4,3),(x,x^(2),x^(3)):}| then find int_(0)^(1) Delta (x) dx.

Value of int_(1)^(9)(x-2)(x-4)(x-6)(x-8)(x-5)dx is

If x+1/x=3 , then the value of x^6+1/x^6 is.

If Delta_1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta_2=|{:(4,x+5,3),(7,x+12,4),(-5,x-1,7):}| such that Delta_1+Delta_2=0, then

The least integral value of f(x)=((x-1)^(7)+3(x-1)^(6)+(x-1)^(5)+1)/(x-1)^(5) , AAx gt 1 is (a) 8 (b) 6 (c) 12 (d) 18

If cos^(-1).(6x)/(1 + 9x^(2)) = -(pi)/(2) + 2 tan^(-1) 3x , then find the values of x

RESONANCE ENGLISH-MATRICES & DETERMINANT-EXERCISE-2
  1. Flind the product of two matrices A =[[cos^(2) theta , cos theta sin...

    Text Solution

    |

  2. If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasin...

    Text Solution

    |

  3. If X=[(3,-4),(1,-1)] the value of X^(n) is

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The number of nxxn matrix A and B such that AB - BA = I is. . .

    Text Solution

    |

  6. If B, C are square matrices of order n and if A = B + C, BC = CB,C^2=0...

    Text Solution

    |

  7. How many 3 x 3 skew symmetric matrices can be formed using numbers -2,...

    Text Solution

    |

  8. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  9. Matrix A such that A^(2)=2A-I, where I is the identity matrix, then fo...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. " If "|{:(sin 0 cos phi,,sin 0 sin phi,,cos 0),(cos 0 cos phi,, cos 0 ...

    Text Solution

    |

  12. Prove that |{:(1+a^(2)+a^(4),,1+ab+a^(2)b^(2),,1+ac+a^(2)c^(2)),(1+ab+...

    Text Solution

    |

  13. Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(b...

    Text Solution

    |

  14. Value of the Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(...

    Text Solution

    |

  15. If Delta1=|[2a,b,e],[2d,e,f],[4x,2y,2z]|,Delta2=|[f,2d,e],[2z,4x,2y],[...

    Text Solution

    |

  16. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  17. Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"...

    Text Solution

    |

  18. If A is 3 xx 3 square matrix whose characteristics polynomical equatio...

    Text Solution

    |

  19. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |