Home
Class 12
MATHS
Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0...

Let `A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"lambda "is"`

A

`-16`

B

16

C

8

D

`-8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that \( A^4 = \lambda I \), where \( A \) is given as: \[ A = \begin{pmatrix} -2 & 7 & \sqrt{3} \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) We start by calculating \( A^2 = A \cdot A \): \[ A^2 = \begin{pmatrix} -2 & 7 & \sqrt{3} \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} -2 & 7 & \sqrt{3} \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - First element: \( (-2)(-2) + (7)(0) + (\sqrt{3})(0) = 4 \) - Second element: \( (-2)(7) + (7)(0) + (\sqrt{3})(2) = -14 + 2\sqrt{3} \) - Third element: \( (-2)(\sqrt{3}) + (7)(-2) + (\sqrt{3})(0) = -2\sqrt{3} - 14 \) - Second row: - First element: \( (0)(-2) + (0)(0) + (-2)(0) = 0 \) - Second element: \( (0)(7) + (0)(0) + (-2)(2) = -4 \) - Third element: \( (0)(\sqrt{3}) + (0)(-2) + (-2)(0) = 0 \) - Third row: - First element: \( (0)(-2) + (2)(0) + (0)(0) = 0 \) - Second element: \( (0)(7) + (2)(0) + (0)(-2) = 0 \) - Third element: \( (0)(\sqrt{3}) + (2)(-2) + (0)(0) = -4 \) Thus, we have: \[ A^2 = \begin{pmatrix} 4 & -14 + 2\sqrt{3} & -2\sqrt{3} - 14 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix} \] ### Step 2: Calculate \( A^4 \) Now, we calculate \( A^4 = A^2 \cdot A^2 \): \[ A^4 = \begin{pmatrix} 4 & -14 + 2\sqrt{3} & -2\sqrt{3} - 14 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix} \cdot \begin{pmatrix} 4 & -14 + 2\sqrt{3} & -2\sqrt{3} - 14 \\ 0 & -4 & 0 \\ 0 & 0 & -4 \end{pmatrix} \] Calculating the elements of \( A^4 \): - First row: - First element: \( 4 \cdot 4 + (-14 + 2\sqrt{3}) \cdot 0 + (-2\sqrt{3} - 14) \cdot 0 = 16 \) - Second element: \( 4 \cdot (-14 + 2\sqrt{3}) + (-14 + 2\sqrt{3}) \cdot (-4) + (-2\sqrt{3} - 14) \cdot 0 = -56 + 8\sqrt{3} + 56 - 8\sqrt{3} = 0 \) - Third element: \( 4 \cdot (-2\sqrt{3} - 14) + (-14 + 2\sqrt{3}) \cdot 0 + (-2\sqrt{3} - 14)(-4) = -8\sqrt{3} - 56 + 8\sqrt{3} + 56 = 0 \) - Second row: - First element: \( 0 \cdot 4 + (-4) \cdot 0 + 0 \cdot 0 = 0 \) - Second element: \( 0 \cdot (-14 + 2\sqrt{3}) + (-4)(-4) + 0 \cdot 0 = 16 \) - Third element: \( 0 \cdot (-2\sqrt{3} - 14) + (-4) \cdot 0 + 0 \cdot (-4) = 0 \) - Third row: - First element: \( 0 \cdot 4 + 0 \cdot 0 + (-4) \cdot 0 = 0 \) - Second element: \( 0 \cdot (-14 + 2\sqrt{3}) + 0 \cdot (-4) + (-4)(0) = 0 \) - Third element: \( 0 \cdot (-2\sqrt{3} - 14) + 0 \cdot 0 + (-4)(-4) = 16 \) Thus, we have: \[ A^4 = \begin{pmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{pmatrix} = 16I \] ### Step 3: Conclusion From the equation \( A^4 = \lambda I \), we can see that \( \lambda = 16 \). ### Final Answer Thus, the value of \( \lambda \) is: \[ \lambda = 16 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-III|18 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II|26 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If points (0,0,9),(1,1,8),(1,2,7)a n d(2,2,lambda) are coplanar, then lambda=

If lambda "and" mu are the cofactors of 3 and -2 respectively in the determinant |{:(1,0,-2),(3,-1,2),(4,5,6):}| the value of lambda+mu is

If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-1),(7,-11,5)] for A=[(-2,3,4),(5,-4,-3),(7,2,9)] , then lambda is

A B C is a triangle where A=(2,3,5)B=(-1,2,2)a n dC(lambda,5mu) , if the median through A is equally inclined to the axes then: lambda=mu=5 (b) lambda=5,mu=7 lambda=6,mu=9 (d) lambda=0,mu=0

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

If three points (0,\ 0),\ (3,\ sqrt(3)) and (3,\ lambda) form an equilateral triangle, then lambda= (a) 2 (b) -3 (c) -4 (d) None of these

If |(a^2,b^2,c^2),((a+lambda)^2,(b+lambda)^2,(c+lambda)^2),((a-lambda)^2,(b-lamda)^2,(c-lambda)^2)|=klambda|(a^2,b^2,c^2),(a,b,c),(1,1,1)|lambda!=0 then k is equal to : (A) 4 lambda abc (B) -4 lambda abc (C) 4 lambda^2 (D) -4 lambda^2

Let L be the line belonging to the family of straight lines (a+2b) x+(a-3b)y+a-8b =0, a, b in R, which is the farthest from the point (2, 2). If L is concurrent with the lines x-2y+1=0 and 3x-4y+ lambda=0 , then the value of lambda is

Let J=int_(0)^(1)cot^(-1)(1-x+x^(2))dx and K= int_(0)^(1)tan^(-1)xdx .If J=lambda K (lambda in N) , then lambda equals

Let P be a plane passing through the points (2,1,0), ( lambda - 1 , 1,1) and ( lambda ,0,1) and R be any point (2,1,6) and image of R in P is Q (6,5,-2) then lambda can be (lambda in R)

RESONANCE ENGLISH-MATRICES & DETERMINANT-EXERCISE-2
  1. Flind the product of two matrices A =[[cos^(2) theta , cos theta sin...

    Text Solution

    |

  2. If AB=O for the matrices A=[[cos^2theta,costhetasintheta],[costhetasin...

    Text Solution

    |

  3. If X=[(3,-4),(1,-1)] the value of X^(n) is

    Text Solution

    |

  4. about to only mathematics

    Text Solution

    |

  5. The number of nxxn matrix A and B such that AB - BA = I is. . .

    Text Solution

    |

  6. If B, C are square matrices of order n and if A = B + C, BC = CB,C^2=0...

    Text Solution

    |

  7. How many 3 x 3 skew symmetric matrices can be formed using numbers -2,...

    Text Solution

    |

  8. If A is a skew-symmetric matrix and n is an even natural number,...

    Text Solution

    |

  9. Matrix A such that A^(2)=2A-I, where I is the identity matrix, then fo...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. " If "|{:(sin 0 cos phi,,sin 0 sin phi,,cos 0),(cos 0 cos phi,, cos 0 ...

    Text Solution

    |

  12. Prove that |{:(1+a^(2)+a^(4),,1+ab+a^(2)b^(2),,1+ac+a^(2)c^(2)),(1+ab+...

    Text Solution

    |

  13. Using properties of determinants, prove that : |{:(a^(2)+1,ab,ac),(b...

    Text Solution

    |

  14. Value of the Delta=|{:(,a^(3)-x,a^(4)-x,a^(5)-x),(,a^(5)-x,a^(6)-x,a^(...

    Text Solution

    |

  15. If Delta1=|[2a,b,e],[2d,e,f],[4x,2y,2z]|,Delta2=|[f,2d,e],[2z,4x,2y],[...

    Text Solution

    |

  16. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  17. Let A=|{:(,-2,7,sqrt3),(,0,0,-2),(,0,2,0):}| and A^(4)=lambda,I,"then"...

    Text Solution

    |

  18. If A is 3 xx 3 square matrix whose characteristics polynomical equatio...

    Text Solution

    |

  19. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |