Home
Class 12
MATHS
Which of the following is true for matri...

Which of the following is true for matrix `A=[{:(,1,-1),(,2,3):}]`

A

`A+4I` is a symmetric matrix

B

`A^(2)-4A+5I_(2)=0`

C

A-B is a diagonal matrix for any value of `alpha "if" =[{:(,alpha,-1),(,2,5):}]`

D

A-4I is a skew symmetric matrix.

Text Solution

AI Generated Solution

The correct Answer is:
To determine which statements are true for the matrix \( A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \), we will analyze each statement step by step. ### Step 1: Calculate \( A + 4I \) The identity matrix \( I \) of order 2 is given by: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, \( 4I \) is: \[ 4I = 4 \times \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \] Now, we calculate \( A + 4I \): \[ A + 4I = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 + 4 & -1 + 0 \\ 2 + 0 & 3 + 4 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 2 & 7 \end{pmatrix} \] ### Step 2: Check if \( A + 4I \) is symmetric A matrix is symmetric if \( A^T = A \). We find the transpose of \( A + 4I \): \[ (A + 4I)^T = \begin{pmatrix} 5 & -1 \\ 2 & 7 \end{pmatrix}^T = \begin{pmatrix} 5 & 2 \\ -1 & 7 \end{pmatrix} \] Since \( (A + 4I)^T \neq A + 4I \), the matrix \( A + 4I \) is not symmetric. ### Step 3: Calculate \( A^2 \) Now we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + (-1) \cdot 2 = 1 - 2 = -1 \) - First row, second column: \( 1 \cdot (-1) + (-1) \cdot 3 = -1 - 3 = -4 \) - Second row, first column: \( 2 \cdot 1 + 3 \cdot 2 = 2 + 6 = 8 \) - Second row, second column: \( 2 \cdot (-1) + 3 \cdot 3 = -2 + 9 = 7 \) Thus, \[ A^2 = \begin{pmatrix} -1 & -4 \\ 8 & 7 \end{pmatrix} \] ### Step 4: Calculate \( A^2 - 4A + 5I \) Now we compute \( 4A \): \[ 4A = 4 \cdot \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & -4 \\ 8 & 12 \end{pmatrix} \] And \( 5I \): \[ 5I = 5 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] Now we can calculate: \[ A^2 - 4A + 5I = \begin{pmatrix} -1 & -4 \\ 8 & 7 \end{pmatrix} - \begin{pmatrix} 4 & -4 \\ 8 & 12 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] Calculating each element: - First row, first column: \( -1 - 4 + 5 = 0 \) - First row, second column: \( -4 + 4 + 0 = 0 \) - Second row, first column: \( 8 - 8 + 0 = 0 \) - Second row, second column: \( 7 - 12 + 5 = 0 \) Thus, \[ A^2 - 4A + 5I = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This confirms that \( A^2 - 4A + 5I = 0 \). ### Step 5: Calculate \( A - B \) Assuming \( B = \begin{pmatrix} \alpha & 2 \\ -1 & 5 \end{pmatrix} \), we compute: \[ A - B = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} \alpha & 2 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 1 - \alpha & -1 - 2 \\ 2 + 1 & 3 - 5 \end{pmatrix} = \begin{pmatrix} 1 - \alpha & -3 \\ 3 & -2 \end{pmatrix} \] ### Step 6: Check if \( A - B \) is a diagonal matrix A diagonal matrix has non-diagonal elements equal to zero. The matrix \( A - B \) is not a diagonal matrix unless specific values for \( \alpha \) are chosen. ### Step 7: Calculate \( A - 4I \) Now we calculate \( A - 4I \): \[ A - 4I = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 1 - 4 & -1 \\ 2 & 3 - 4 \end{pmatrix} = \begin{pmatrix} -3 & -1 \\ 2 & -1 \end{pmatrix} \] ### Step 8: Check if \( A - 4I \) is skew-symmetric A matrix is skew-symmetric if \( A^T = -A \). We find the transpose: \[ (A - 4I)^T = \begin{pmatrix} -3 & -1 \\ 2 & -1 \end{pmatrix}^T = \begin{pmatrix} -3 & 2 \\ -1 & -1 \end{pmatrix} \] Since \( (A - 4I)^T \neq -(A - 4I) \), it is not skew-symmetric. ### Conclusion The true statements for the matrix \( A \) are: 1. \( A + 4I \) is not symmetric. 2. \( A^2 - 4A + 5I = 0 \) is true. 3. \( A - B \) can be a diagonal matrix for specific values of \( \alpha \). 4. \( A - 4I \) is not skew-symmetric.
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

find the inverse of the following matrix : [{:(1,-1),(2,3):}]

Let A be an mxxn matrix. If there exists a matrix L of type nxxm such that LA=I_(n) , then L is called left inverse of A. Which of the following matrices is NOT left inverse of matrix [(1,-1),(1,1),(2,3)]?

Which of the following statement is not true for ._(1)H^(1),._(1)H^(2),._(1)H^(3) respectively -

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

Find the inverse of the matrix A= [(3,1),(4,2)]

The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

Let matrix B=[[4,1],[-9,-2]] then which of the following will not be an element of matrix B^(100) 300 (2) 301 (3) -299 (4) 100

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-III
  1. Which one of the following is wrong?

    Text Solution

    |

  2. Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  3. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  4. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  5. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  6. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  7. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  8. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  9. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  10. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  11. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|. Then

    Text Solution

    |

  12. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  13. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  14. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  15. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  16. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  17. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  18. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |